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Abstract
Abstract

Climate change poses a severe threat to agricultural production, particularly for smallholder farmers in Ethiopia,
where over 80% of livelihoods depend on rain-fed systems. This thesis examines crop-specific impacts of temperature
and precipitation variability and evaluates crop diversification as an adaptation strategy. Using nationally representative
LSMS-ISA household–crop–year panel data (over 20, 000 observations, 2011–2022), we combine fixed-effects econometric
models with linear and nonlinear climate variables and semi-parametric temperature-bin specifications (1∘C increments) to
identify within-household responses while controlling for unobserved heterogeneity. The analysis applies a multimargin
framework—yields (intensive margin), revenues (economic margin), and crop choice (extensive margin), while modeling
diversification as an endogenous behavioral response to climate stress. Results show strong heterogeneity across crops. A
+1∘C warming increases rice yields by ≈ 47%, sorghum by ≈ 38%, and millet by ≈ 33%, but reduces teff and garlic yields
by ≈ 8% and ≈ 17%, respectively, once thermal thresholds are exceeded. On the revenue side, chat (khat) income declines
by ≈ 14% per +1∘C, while pepper revenues increase by ≈ 12%. Precipitation effects are smaller but non-negligible: a
+10% rise in rainfall raises sorghum and pepper revenues by 0.5–0.6%, yet reduces chat revenues by ≈ 1%. Evidence
from drought years shows that diversification buffers yield losses, particularly in low-rainfall zones, though effectiveness
varies by agroecological context and market access. Across many crops, significant quadratic temperature terms confirm
the threshold-dependent nature of climate impacts: moderate warming can be beneficial, but beyond crop-specific limits,
productivity and incomes decline rapidly. Policy implications include the spatial targeting of climate-resilient crops,
scaling up diversification through improved varieties and extension services, and investment in irrigation to reduce rainfall
dependence. These findings directly support Ethiopia’s Climate Resilient Green Economy strategy and provide a replicable
framework for other smallholder-based economies confronting climate risks.

Keywords: Climate change, Crop diversification, Agricultural adaptation, Nonlinear climate effects.

JEL Codes: Q12, Q54, O13, Q16.
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1 Introduction

Agriculture remains the foundation of Ethiopia’s economy, not only in terms of employment and GDP contribution but as
the lifeblood of rural livelihoods, food security, and national development. The sector employs over 65% of the workforce
and contributes approximately 35% to the country’s GDP (World Bank, 2020). It supports the majority of the population,
particularly in rural areas by providing both subsistence and market oriented production, and also anchors the socio-economic
stability. Agriculture is also a key driver of poverty reduction and foreign exchange earnings, notably through exports such as
coffee, pulses, and oilseeds. However, despite its central role, the sector remains constrained by persistent structural limitations:
notably low productivity, limited technological adoption, poor access to inputs, and, most importantly, near-total reliance on
rainfed systems. These vulnerabilities make Ethiopian agriculture extremely sensitive to climatic fluctuations. Over the last
two decades, Ethiopia has witnessed a marked increase in the frequency and intensity of climate shocks. Rising temperatures,
erratic rainfall, delayed rainy seasons, and prolonged droughts have becomemore common, disrupting the agricultural calendar
and threatening food production (Funk et al., 2015; Alemayehu & Bewket, 2017).

These climatic disturbances have had substantial impacts on yields, household incomes, and rural welfare. For smallholder
farmers, who cultivate over 90% of the agricultural land, climate shocks often lead to irreversible damage. With limited
access to financial services, irrigation, or crop insurance, these farmers are unable to buffer the risks. The consequences are
not only agronomic, but deeply socio-economic: yield losses translate into food shortages, increased poverty, and migration.
In this context, climate variability poses a systemic threat to Ethiopia’s long-term development goals. While a growing body
of literature has documented the biophysical and economic consequences of climate change on agriculture, much of this
research has been conducted in high or middle-income settings and tends to rely on aggregated data. Landmark studies such
as Schlenker and Roberts (2009) and Lobell et al. (2011) have demonstrated that temperature increases have nonlinear effects
on yields, with modest warming sometimes beneficial, but significant losses occurring beyond certain critical thresholds.

These findings shed light on climate yield relationships but are often based on national or regional data that obscure household-
level realities. Such aggregation overlooks the heterogeneity of smallholder farming systems, shaped by agroecological di-
versity, behavioral responses, and resource constraints. Sub-Saharan Africa—and Ethiopia in particular, remains underrepre-
sented in empirical studies despite being among the most climate-vulnerable regions globally. Ethiopia’s agriculture is highly
diverse: cereals (teff, maize, barley, sorghum), legumes (beans, peas), fruits (avocado, mango), vegetables (onions, kale,
tomatoes), and industrial crops (coffee, sesame, tobacco) are cultivated across contrasting highland and lowland zones. Each
crop has distinct environmental requirements and sensitivities to heat, water stress, and seasonality. Yet most studies treat
agriculture as homogeneous, masking crop- and region-specific vulnerabilities. This limits the effectiveness of adaptation
strategies and highlights the urgent need for disaggregated, crop-specific, and localized evidence on climate responses.

Study Context, Data and Scope

This study relies on a nationally representative panel dataset that captures the complexity and heterogeneity of smallholder
agriculture in Ethiopia. The primary data source is the Ethiopian Socioeconomic Survey (ESS), conducted in collaboration
with the Central Statistical Agency of Ethiopia and theWorld Bank’s Living StandardsMeasurement Study–Integrated Surveys
on Agriculture (LSMS-ISA). Spanning multiple waves and including over 20,000 crop-year observations, the ESS provides a
broad temporal window to analyze both short-term climatic shocks and long-term trends in climate-agriculture interactions. At
both the household and plot levels, the ESS offers highly detailed information, including household demographics, agricultural
practices, plot-specific crop choices, land area, yields, output volumes, and revenues. This granularity enables a nuanced
investigation of farmer behavior and crop performance across Ethiopia’s diverse agroecological zones. The panel structure
allows for the application of fixed-effects models to control for time-invariant unobserved household characteristics, thereby
strengthening causal inference. To assess climate exposure, household-level survey data are matched with spatially explicit,
high-resolution weather datasets. Daily temperature data are sourced fromERA5, while precipitation data come fromCHIRPS.
Additionally, the Copernicus ERA5-Land dataset provides gridded daily weather data at a spatial resolution of 0.1° (approx.
10 km). Each household’s coordinates are matched to the nearest grid cell, enabling the construction of key climate exposure
variables at the household-year level.
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Figure 1: Main Crops in the Scope
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The scope of the analysis is broad, coveringmore than 15major crop types commonly grown in Ethiopia. These are categorized
into cereals (e.g., teff, maize, sorghum, barley, rice), pulses (e.g., beans, peas), fruits (e.g., avocado, mango), vegetables (e.g.,
kale, onion, tomato), and industrial/oilseed crops (e.g., coffee, sesame). This classification allows for crop-specific evaluation
of climate sensitivities, uncovering which crops are most vulnerable or resilient to changes in temperature and rainfall. Such
disaggregation is rare in the climate-agriculture literature and constitutes a major empirical strength of this study. It transcends
generalized statements and provides behaviorally realistic and policy-relevant insights into how different crops and household
contexts respond to climatic variation.

Positioning within the Literature

Climate change is widely recognized as one of the most pressing threats to agriculture, with particularly severe implications
in Sub-Saharan Africa where rainfed systems dominate and adaptive capacity is limited (FAO, 2016). Ethiopia exemplifies
this vulnerability: agriculture employs more than 70% of the population and contributes around 35% of GDP (World Bank,
2022), while over 80% of cultivated land is managed by smallholders operating under structural constraints such as insecure
tenure, limited irrigation, and poor access to markets and credit (Deressa et al., 2008; Bewket, 2009). These conditions
heighten farmers’ sensitivity to both gradual warming and rainfall variability, making Ethiopia a critical setting for studying
micro-level climate adaptation.

The academic literature consistently shows that climatic impacts on agriculture are rarely linear. Seminal studies such as
Schlenker & Roberts (2009) and Lobell et al. (2011) demonstrate sharp yield declines beyond critical temperature thresholds,
with damages accelerating at higher levels of exposure. African studies reinforce this evidence and highlight the importance
of rainfall timing and distribution, not just aggregate totals, in shaping productivity (Alemayehu & Bewket, 2017; Araya &
Stroosnijder, 2010). For Ethiopia specifically, delayed onset of the rainy season reduces maize and teff yields by up to 18%,
while truncated rainfall periods heighten vulnerability for shallow-rooted crops such as teff. Such findings underscore the
need for crop-specific, threshold-based models rather than aggregate estimates.

Beyond yield impacts, the literature emphasizes two complementary behavioral adaptation strategies at the household level:
crop switching and crop diversification. Crop switching, or the extensive margin of adaptation, refers to farmers’ reallocation
of land toward crops more suited to prevailing climatic conditions. Seo & Mendelsohn (2008) provide foundational evidence,
showing that in semi-arid Africa, a 1°C rise increases the probability of choosing sorghum over maize by 32% and millet by
15%. Similar dynamics are observed in Ethiopia: negative rainfall shocks decrease maize cultivation but increase sorghum
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adoption (Asfaw et al., 2021), while temperature stress reduces teff viability and shifts choices toward millet (Diro et al., 2022).
These studies illustrate that crop choice is not static but an endogenous behavioral response to climate variability, shaped by
experiential knowledge and household-level optimization.

Crop diversification, in turn, has long been theorized as a cornerstone of resilience in rainfed systems. Defined as cultivating
multiple crop species either spatially (e.g., intercropping, polyculture) or temporally (e.g., crop rotation), diversification oper-
ates through both economic and ecological channels. From a risk-management perspective, it reduces production and income
variance through the “portfolio effect” (Tilman et al., 2002). From an agroecological perspective, diversified systems enhance
soil fertility, improve water retention, and buffer pest and disease pressures (Lin, 2011; Altieri et al., 2015). Empirically, Di
Falco et al. (2011) find that a 10% increase in crop diversity in Ethiopia is associated with a 4.5% reduction in yield vari-
ability, and diversified households experienced 15–20% lower yield losses during droughts. However, diversification also
carries potential trade-offs. Barrett et al. (2001) argue that excessive or distress-driven diversification may dilute managerial
attention, increase labor costs, or trap households in low-return systems. Thus, its effectiveness is context-dependent, varying
by agroecological conditions, household assets, and institutional support.

Despite these advances, important gaps remain. Many studies aggregate crops into broad categories, overlooking crop-specific
nonlinearities and threshold responses. Others treat diversification as an exogenous characteristic rather than an endogenous
adaptation to climate shocks. Moreover, much of the literature focuses narrowly on yields, neglecting welfare outcomes such
as income stability or food security. Ethiopia, with its extraordinary agroecological diversity and policy emphasis on Climate-
Smart Agriculture under the CRGE strategy (FDRE, 2011), remains underrepresented in studies that integrate yields, revenues,
and crop choice within a unified empirical framework. Addressing these gaps requires household-level panel analysis that
explicitly models nonlinear climate responses and captures both intensive and extensive margins of adaptation.

Research Problem, Objectives, and Contributions

Despite significant efforts by the Ethiopian government to mainstream climate resilience—particularly through the Climate
Resilient Green Economy (CRGE) strategy (FDRE, 2011), substantial challenges persist in translating these ambitions into
evidence-based agricultural planning. Climate-smart agriculture (CSA), a central pillar of CRGE, critically depends on a
nuanced understanding of how different crop types and farming systems respond to climatic stressors. In the absence of
such disaggregated and empirical knowledge, CSA interventions risk being overly generic, misaligned with local agronomic
realities, and less effective in building resilience.

The core research problem addressed by this thesis stems from this disconnect between high-level policy frameworks and
context-specific empirical evidence. While the global literature widely documents the importance of climate impacts on agri-
culture, most studies either focus on national or regional averages, or aggregate outcomes across crop categories (e.g., cereals).
Such approaches obscure the nonlinear, threshold-based responses that exist at the crop level and fail to capture the complex
adaptive behavior of smallholders. This analytical vacuum is particularly problematic in Ethiopia, where farming systems are
highly diverse, and where climate shocks disproportionately affect food security, income stability, and rural livelihoods.

This thesis is guided by the fundamental question: How do variations in temperature and precipitation affect agricultural
outcomes across different crop types in Ethiopia, and at what nonlinear thresholds do these effects become significantly
beneficial or harmful? In addressing this question, the study explores three complementary dimensions: (1) identifying crops
that are relatively resilient or vulnerable to climatic changes; (2) empirically establishing climate thresholds beyond which
yield and income responses change in magnitude or direction; and (3) informing spatially differentiated CSA interventions
tailored to Ethiopia’s agroecological zones. By doing so, the research aims to bridge the gap between scientific evidence and
policy design, ensuring that adaptation strategies reflect both climatic realities and local farming systems.

The contributions of this thesis are fourfold. Theoretically, it challenges the assumption of linear climate–agriculture relation-
ships by integrating nonlinear climate response functions—quadratic specifications and temperature-bin models (Schlenker &
Roberts, 2009); Lobell et al., 2011) into household-level econometric models. Empirically, it extends these frameworks to the
under-studied Ethiopian context, covering more than 15 crops across multiple waves of nationally representative LSMS-ISA
data (2011–2022, over 20,000 household–crop–year observations), matched with high-resolution climate datasets (CHIRPS,
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TerraClimate). This enables the identification of crop-specific nonlinear thresholds and highlights novel findings, such as the
role of cold stress in highland cereals like rice and millet—an area largely neglected in African agricultural research.

Methodologically, the study introduces a multi-model empirical strategy that enhances robustness and interpretability. It
combines linear-quadratic regressions, temperature-bin models, and crop–climate interaction terms to triangulate evidence
of climate impacts. Household fixed effects control for time-invariant heterogeneity (e.g., soil type, elevation, long-term
infrastructure), while wave dummies capture national-level shocks. Clustered standard errors and diagnostic checks strengthen
causal inference, aligning with best econometric practices (Dell et al., 2014); Cameron & Miller, 2015) rarely applied in
African smallholder contexts. Importantly, the thesis innovates by modeling crop diversification not as an exogenous control
variable (as in Bezabih & Di Falco, 2012; Asfaw et al., 2016), but as an endogenous behavioral response to climate variability,
thus capturing the adaptive strategies farmers employ to manage risks.

From a policy perspective, the study provides actionable evidence for designing CSA interventions in Ethiopia. By distinguish-
ing climate-vulnerable from resilient crops, the findings support targeted extension services, dissemination of stress-tolerant
varieties, investment in irrigation and water management, and the promotion of strategic diversification as a resilience mech-
anism. Crucially, the results demonstrate that marginal warming gains can quickly reverse when biophysical thresholds are
crossed, thereby challenging one-size-fits-all adaptation narratives. Instead, the evidence advocates for geographically and
crop-specific strategies that better align with Ethiopia’s agroecological diversity and socio-economic realities, contributing to
both immediate adaptation and long-term climate resilience.

Structure of the Thesis

The structure of this thesis follows a logical progression from theory to evidence and implications. section 2 describes the data
sources, the management process and some descriptive statistics, while section 3 outlines the econometric models and empiri-
cal strategy. section 4 presents the main results and discussions for policy implications for Ethiopia’s Climate Resilient Green
Economy (CRGE) strategy and related CSA interventions. Finally, section 5 concludes by summarizing the contributions, the
limitations, and suggesting avenues for future research.
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Table 1: Synthetic Literature Review Grouped by Theme, Method, and Contribution

Study Theme Objective Method Results Limitations Gap Addressed
Climate-Yield Relationships

Schlenker
& Roberts
(2009)

Climate-Yield Non-
linearity: Tempera-
ture thresholds

Estimate nonlinear effects
of temperature on crop
yields (U.S.)

Panel data regression with
degree-day bins, fixed effects

Maize yields decline 7% per °C
above 29°C; strong convexity in
damage function

U.S. based, not smallholder-
focused

Applies nonlinear thresholds to
Ethiopian crops using local data.
Basis for binned temperature
approach in Model 3; informs
crop-specific thresholds

Lobell et al.
(2011)

Climate-Yield Non-
linearity: Physio-
logical stress

Identify yield losses from
short-term heat stress and
VPD

Process-based crop modeling
+ Cross-country regressions,
physiological modeling

Flowering-stage heat shocks reduce
yields by 20-40%. VPD better
stress indicator than temperature
alone. VPD and heat stress during
flowering severely reduce yield

Weak behavioral integra-
tion. Focus on biophysics
over farmer behavior

Link VPD to behavioral
models of crop switching in
Ethiopia. Guides inclusion of
phenological-stage variables in
yield models.

Funk et al.
(2015)

Climate
Data:Precipitation
monitoring

Develop high-resolution
precipitation dataset for
Africa

Satellite data fusion with station
observations

CHIRPS improves drought monitor-
ing. CHIRPS improves drought de-
tection by 30% over existing prod-
ucts

Requires validation for
micro-level studies

Uses CHIRPS for Ethiopia-
specific analysis. Provides
climate data foundation for
Ethiopian analysis.

Adaptation Strategies
Di Falco et
al. (2011)

Diversification ben-
efits

Assess yield effects of
plot-level diversification
during drought. Test yield
stabilization effects during
drought

Panel FE with Shannon Index.
Panel regression with Shannon
Index

10%↑ diversity →4.5%↓ yield vari-
ance; 15-20% less loss for diversi-
fied farms 15-20% lower yield loss
among diversified farmers

Does not model diversifica-
tion endogenously. Static
treatment of diversity

Models diversification as en-
dogenous climate response

Asfaw et al.
(2021)

Crop Switching Study rainfall-driven crop
switching in Ethiopia

Panel regression with rainfall
anomalies. Household fixed ef-
fects

Sorghum replaces maize under dry
shocks. -7.3pp maize, +8.5pp
sorghum per 1σ dry shock

Focused only on crop
choice

Integrates crop choice with
yield and income effects. Ex-
pands to full crop portfolio with
temperature effects.

Diro et al.
(2022)

CSA Adoption Examine determinants of
CSA adoption in Ethiopian
coffee systems

Multinomial logit model Extension access and credit key
for CSA adoption. Extension ac-
cess(OR=2.3) and credit(OR=1.8)
key determinant

Single commodity (bias) fo-
cus

Expands to multiple cropping
systems Tests generalize ability
across cropping systems.

Methodological Approaches
Continued on next page
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Study Theme Objective Method Results Limitations Gap Addressed
Dell et al.
(2014)

Econometrics:
Causal inference

Review econometric best
Meta-analysis in climate im-
pact studies

Literature review; emphasis on
causal inference. Cluster-robust
SEs reduce false positives by
40%

Emphasizes FE, clustering, robust
standard errors

Not empirical; general guid-
ance

Empirically implements best
practices. Implements rigorous
FE+clustering in all models

Hausman
& Taylor
(1981)

Panel Methods:
Panel endogeneity

Address correlated random
effects. Address endogene-
ity in panel models with
time-invariant variables

Instrumental variables ap-
proach

HT estimator handles correlated ran-
dom effects. HT estimator reduces
bias by 25-60% vs RE

Complex implementation Simplifies for applied small-
holder analysis context.

Policy Frameworks
FDRE
(2011)

National Strategy Launch CRGE initiative.
Set Ethiopia’s climate-
resilient development
vision

Policy document analysis
framework (qualitative)

CRGE emphasizes sustainable agri-
culture. Targets 20% emissions cut
via CSA by 2030 v Implementation
gaps

Not empirically grounded Provides context for policy rec-
ommendations

FAO
(2013)

CSA Guidelines Synthesize global evidence.
Provide global CSA imple-
mentation framework

Case meta-analysis Identifies 3 pillars: productiv-
ity, adaptation, mitigation. 3
pillars:productivity (+20%), adapta-
tion (-30% risk), mitigation

Lacks localized evidence.
Context specificity lacking

Adapts principles to Ethiopian
context condition

Ecological-Economic Linkages
Tilman et al.
(2002)

Agroecology Model stability-diversity re-
lationships. Theorize stabil-
ity benefits of crop diversity

Ecological theory and modeling Biodiversity enhances productivity
and resilience. 2-species systems re-
duce yield variance by 35%.

Lacks microeconomic
focus. Field validation
needed.

Links ecological insights to
farm models. Connects to
household diversification

Lin (2011) Diversification.
Agroecological
resilience

Quantify benefits diversifi-
cation. Analyze resilience
through crop diversity

Meta-analysis of field studies Diverse systems have 20-40%
lower yield variance. Polycultures
maintain 80% yield during drought
vs 60% monoculture

Limited economic analysis.
Economic tradeoffs absent

Quantifies risk reduction in
household models. Incorpo-
rates cost-benefit analysis.

Behavioral Economics
Duflo et al.
(2011)

Technology Adop-
tion: Adoption
barriers

Test nudge interventions
in Kenya: Test behavioral
nudges for fertilizer use

Randomized controlled trials Small incentives boost adoption by
15-20%. Timely SMS reminders ↑
adoption by 11.7pp

Focus on inputs not systems.
External validity concerns.

Adapts behavioral insights to
CSA adoption

Tversky
and Kah-
neman
(1974)

Decision-Making:
Risk perception

Model heuristics in risky
choices. Identify decision
heuristics

Laboratory experiments Identifies systematic biases in risk
perception. Loss aversion coeffi-
cient 𝜆≈2.25

Artificial setting Controls for behavioral biases.
Incorporates behavioral realism
in adaptation models
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2 Data

The maps below (Figure 2) illustrate the spatial distribution of average temperature and precipitation across Ethiopia at the
household level, highlighting the country’s marked climatic heterogeneity. Temperatures range from below 15∘C in the central
and northern highlands, such as around Addis Ababa and the Amhara region—to above 30∘C in the Rift Valley and eastern
lowlands, reflecting the dominant role of altitude in shaping local agro-ecological conditions.

Figure 2: Temperature and precipitation in the Study Scope
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Similarly, rainfall varies sharply across regions: annual precipitation falls below 600𝑚𝑚 in arid zones like Afar and Somali,
while exceeding 1, 100𝑚𝑚 in the western highlands of Oromia and the SNNPR, where more reliable rainfall sustains water-
intensive crops such asmaize, teff, and coffee. In contrast, drier regions face recurrent water stress, requiring adaptive practices
such as drought-tolerant varieties or water-harvesting techniques.

These spatial gradients underscore the necessity of a disaggregated empirical framework that can capture crop-specific thresh-
olds and nonlinear responses. Crops such as teff and maize, for instance, are highly sensitive to delayed rainfall and tem-
peratures above 26∘C, while sorghum and millet are better suited to hotter, drier environments. Conversely, rice and coffee
are concentrated in wetter areas where hydrological conditions are more favorable. By linking these climatic patterns to
household-level outcomes, the maps provide not only geographical context but also the empirical foundation for the study’s
econometric models on yield, income, and crop choice, emphasizing that climate impacts on Ethiopian agriculture can only
be understood through a spatially differentiated lens.

2.1 Data Collection Process

In this study, I use micro-level panel data from the Living Standards Measurement Study – Integrated Surveys on Agriculture
(LSMS-ISA) conducted in Ethiopia, commonly known as the LMSIA data set and developed by the World Bank. This data
draws five waves of the survey (Waves 1 through 5). In fact the wave 1 covers 2011 to 2012, the wave 2 from 2013 to 2014,
wave 3 from 2015 to 2016, wave 4 from 2018 to 2019 and wave 5 from 2021 to 2022. This offer repeated observations
on a nationally representative sample of agricultural households. These data are particularly well-suited to analyze climate
impacts because they provide detailed plot-level and household-level information, along with geospatial coordinates, which
allow to integration with external environmental datasets. The panel structure enables the identification of within-household
variation over time, for controlling unobserved heterogeneity in productivity drivers. From the LMSIA surveys, I extracted
the following core variables: household identifiers, the major crop planted (Crop) [𝐶𝑖𝑡], the quantity harvested in kilograms
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(Quantity)[𝑄𝑖𝑡], and the cultivated area in square meters (area_m2), the total revenue from the major crop Crop_rev[𝑅𝑖𝑐𝑡],
the latitude lat,longitude long. The Table 2 presents the different question asked to the smallholders during the survey:

Table 2: Variables and Survey Questions

Variable Description of variable Survey Question

𝐶𝑖𝑡 Major crop of the household What are the major crops of this holder?
𝑄𝑖𝑡 Harvested quantity from the major crop How much did you harvest from the major crop?
𝑆𝑖𝑡 Cultivated area of the field (in m²) Area of [Field] (Square Meters)
𝑅𝑖𝑡 Total income of the Household (in BIRR) What was the total revenues? (BIRR)

This information is from the documentation from the description of the questionnaire of the LMS data setaEthiopia-Socio-Economic
Panel survey, in each wave of investigation they were addressed the same questions to the Households.

ahttps://microdata.worldbank.org/Ethiopia-Socio-Economic-Panel-Survey

To ensure accurate measurement of all variables, the dataset was cleaned and harmonized across waves. The first step con-
cerned crop names. I reviewed all reported names, corrected spelling variations, and merged duplicates to ensure consistency.
Each crop was verified to confirm its actual cultivation in Ethiopia, drawing on reference lists from FAO and CSA. This
process resulted in a reduced and reliable list of crops cultivated by smallholders, and the creation of a standardized crop
dictionary.
The second step focused on household yields (𝑌𝑖𝑐𝑡), which required consistent measures of cultivated area (𝑆𝑖𝑡) and harvested
quantity (𝑄𝑖𝑡). Reported units for𝑄𝑖𝑡 varied across households (grams, kilograms, quintals). Since over 50% of records were
in kilograms and grams, all quantities were converted into kilograms for uniformity.

Before proceeding, I verified the consistency of the panel. Specifically, I checked that crops were reported in each wave, that
households appeared across waves, and that area, quantity, and household income (𝑅𝑖𝑡) were not missing. Approximately
5% of households were absent in at least one wave, while some appeared only intermittently; however, this small share does
not threaten the representativeness of the sample. For the main variables (𝑅𝑖𝑡, 𝑆𝑖𝑡, 𝑄𝑖𝑡), missing or zero values generated
eight possible cases (23 = 8), which are detailed in Table 2. This classification guided the treatment of inconsistencies in
area, output, and revenue, ensuring that the final dataset was consistent and reliable for econometric analysis.

In Figure 16 the number "1" stand for value of the correspondent variableswhich are not null and "0"when this value is null. But
this does not represent all the cases, I added the other case in the table Table 7. This analysis evaluates the internal consistency
of agricultural production data specifically area planted (surface), harvest quantity (quantity), and crop income (revenue)
across all waves of my panel dataset. Each household’s data is cross validated against these three key variables. The cleaning
method adheres to principles in the literature (notably FAO1, LSMS2, and CSA3 ), distinguishing between plausible agricultural
events (e.g., crop failure, full self-consumption) and reporting or data-entry errors (e.g., missing yield with positive income).
I also check whether a household’s crop name (crop) is missing in a given wave and impute it from their most frequently
reported crop across waves if needed. This is aligned with LSMS guidelines for preserving longitudinal information.

The diffrents cases are displayed in the Table 7. In fact, Case 1 refers to households for which all three variables crop area,
quantity harvested, and income are zero or missing across all five waves. These observations indicate no agricultural activity
and are thus irrelevant to a crop yield study. Since they represent roughly 6% of the data and do not contribute information,
they are excluded from the final dataset.

Case 2 includes households with zero or missing land area values, but positive values for harvest and income. While this may
appear inconsistent at first glance, it is common in smallholder surveys for farmers to report quantities from backyard gardens,
communal plots, or mixed fields without specifying precise area. Such cases are plausible and are retained to preserve the
richness of the data. Case 3 involves households that report crop income and area planted, but show zero or missing harvest

1FAO. Post Harvest Loss Assessment Guidelines, 2021, FAOSTAT. Ethiopia Country Profiles ([https://www.fao.org/faostat](https://www.fao.org/faostat))
2World Bank LSMS Guide to Agricultural Household Surveys, 2021
3CSA Ethiopia. Agricultural Sample Survey (2012–2022),EIAR. Ethiopian Institute of Agricultural Research Reports
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quantity. This situation is difficult to justify agronomically. Either the harvest quantity was not reported, or there is a mismatch
between crop income and production. Since yield (income or harvest per area) cannot be computed, these cases should be
flagged. If sufficient evidence supports imputation (e.g., median yield by crop), that may be applied cautiously.

Case 4 describes situations where the farmer reports having planted and harvested the crop but reports no crop income. This
is a realistic scenario. It could arise due to full self-consumption, bartering, spoilage, or lack of market access. It reflects real
behavior and is therefore kept in the sample, especially when analyzing food security, subsistence production, or non-monetary
farming. Case 5 includes households that report having planted land (area > 0) but neither harvested anything nor earned any
income. This likely indicates total crop failure due to pests, drought, flooding, or other external shocks. As long as the crop
name is provided, such cases are agriculturally plausible and should be retained for resilience analysis.

Case 6 represents the fully consistent and expected records, where all three variables are strictly positive. These cases form
the benchmark and are always retained. Case 7 shows households with harvest data but no land area or income. This may
reflect informal gardening, communal farming, or imprecise measurement. Such cases are retained when plausible, especially
if the quantities are small. If not, they are flagged for sensitivity analysis. Case 8 corresponds to records where households
report only income but no information on quantity or land. While income can sometimes be estimated independently (e.g.,
through market sales), the lack of production data makes yield computation impossible. These cases should be excluded or
treated as outliers.

Case 9 captures those records where land and income are reported but harvest is missing. Again, this creates problems
in computing physical yields. However, if other waves contain valid data for the same crop and household, imputation of
quantity is reasonable. Otherwise, these cases are flagged for low reliability. Case 10 arises when households report having
planted and harvested but do not report income. This is quite common in rural Ethiopia, where self-consumption, traditional
exchanges, or losses may lead to zero income. Such observations are essential for understanding livelihood strategies and are
kept. Case 11 captures situations where the crop name is missing even when production and economic variables are valid. To
avoid information loss, the missing crop name is imputed using the most frequently reported crop by the household in other
waves. This method is consistent with LSMS panel practices and helps maintain longitudinal consistency.

For the area of field, it was sometimes in square meter or in hectare. I convert all of them in hectare, before compute the
variable yield4 per hectare defined as the ratio of harvest quantity to area (converted into hectares) of each household. Now, to
be sure that the yield by each crop in the database is well measured I took as reference the yield of the smallholders in Ethiopia
defined by the FAO and the CSA. To ensure the reliability and comparability of yield data across waves and crops, a set of
external reference values was used as benchmarks during the adjustment process.

These reference ranges, expressed as realistic yield intervals in kg/ha (minimum, maximum, and mean), were drawn from a
combination of authoritative agricultural databases and institutional reports, including the Central Statistical Agency (CSA) of
Ethiopia’s Agricultural Sample Surveys, FAOSTAT, the Ministry of Agriculture (MoA), and specialized research institutions
such as EIAR, ICRISAT, and CIMMYT. These sources provide empirical yield distributions based on field trials and national-
level surveys, making them reliable proxies for the expected performance of each crop under normal agronomic conditions.

By anchoring adjustments to these external references, the methodology avoids circularity (i.e., adjusting data based solely
on internal patterns) and ensures that extreme or anomalous values are corrected toward plausible agronomic norms. This is
particularly critical for panel datasets where intra-household comparisons and fixed-effects modeling are applied, and where
stability and realism of outcome variables like yield are necessary for sound inference. Moreover, the use of cross-institutional
reference data strengthens the external validity of the analysis, enabling results to be more credibly interpreted in national and
regional agricultural policy contexts.

To ensure the consistency, accuracy, and analytical validity of yield measurements across agricultural waves and crop types,
a systematic correction protocol was applied. This approach was designed to address outliers, harmonize yield distributions
across waves, and bring anomalous values closer to a realistic and reference-based scale without distorting the overall vari-
ability in the data. The central goal of this process was to correct raw yield observations by leveraging wave and crop specific

4𝑌𝑖𝑡(𝑘𝑔/ℎ𝑎) = 𝑄𝑖𝑡(𝑘𝑔)
𝑆𝑖𝑡(ℎ𝑎)
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reference values (including the minimum, maximum, mean, median, and median ratio) computed from a cleaned baseline
dataset. This ensures that each yield value aligns with realistic agronomic ranges observed for the same crop in the same wave
while preserving household-level heterogeneity.

The adjustment follows a multi-criteria conditional logic. First, the proportional correction (Case 1): When the yield falls
within the normal range and the median ratio is available from at least five observations, a scaling adjustment is applied. The
yield is divided by the median_ratio, allowing for harmonization between observed yields and reference expectations across
waves. This case ensures that reliable data are corrected efficiently without distortion. Second, the limited reference support
(Case 2): In cases where the yield is acceptable but insufficient data exist to compute a stable median ratio, a more conservative
correction is used. The yield is averaged with the reference mean for the corresponding crop and wave. This mitigates the
risk of overcorrection due to small sample sizes.

Third, the values below minimum threshold (Case 3): Yields that fall below the reference minimum are partially adjusted
upward toward the mean by 70% of the shortfall. This gradual correction avoids abrupt replacements while reintroducing
plausibility. Fourth, the values above maximum threshold (Case 4): When the observed yield exceeds the reference maximum,
it is reduced progressively by 70% of the excess. This approach preserves legitimate high yields while controlling for extreme
outliers that could skew the analysis. Fifth, the bounded adjustments (Case 5): All adjusted yields are subsequently clipped
to remain within the range [𝑀𝑖𝑛, 𝑀𝑎𝑥], ensuring that no yield falls outside of acceptable agronomic boundaries.

Therefore, I records the corrected yield values. With that the total agricultural production is recomputed using the corrected
yield and the cultivated area . So that each crops has its specifics rule of correction. This adjustment strategy allows for the
correction of outliers and data inconsistencies while preserving meaningful variation across households, crops, and time. The
use of reference benchmarks ensures that the corrections are rooted in both statistical logic and agricultural plausibility. In the
context of fixed effects models, where within-unit variation is essential, such data preparation is critical. It avoids the artificial
inflation or compression of yield data that could undermine the validity of econometric results.

To reduce heteroskedasticity, normalize the right-skewed distribution, and facilitate interpretation in terms of elasticities, this
yield measure was log-transformed into log_Yield, following standard practices in the agricultural economics literature
(Lobell et al., 2011; Guiteras, 2009) . But I take log(1 + 𝑥) to take into account for the yield and revenue Which are null. I
do the same for the revenue of the household. Then to characterize the climatic conditions experienced by each household
in each wave, I matched weather data especially the precipitation and temperature from the Copernicus ERA5-Land dataset,
which provides high-resolution gridded daily data at a spatial resolution of 0.1° (approximately 10 kilometers).

A geospatial join was performed between each household’s latitude and longitude coordinates and the closest ERA5 grid cell.
Based on this match, several key climate exposure variables are constructed for each household and wave-year observation.
First, the annual mean temperature (𝑇𝑖𝑡) is calculated as the average of daily mean temperatures across the full agricultural year.
Second, total precipitation (𝑃𝑖𝑡) is computed as the cumulative rainfall over the growing season, reflecting water availability
critical for crop growth.

I also include a squared heat exposure term (𝑇 2
𝑖𝑡,𝑃 2

𝑖𝑡) to capture potential nonlinear effects. These variables jointly provide
a comprehensive and theoretically informed representation of climate stressors relevant for smallholder agriculture. Each of
these climate variables is constructed with agronomic plausibility in mind and aligns with thresholds used in prior empirical
work on weather-yield relationships. Their inclusion allows the study to differentiate between linear and non-linear impacts
of climate shocks, as well as to test heterogeneous effects across crop types. The resulting panel dataset is organized at
the household–crop–wave level, permitting the estimation of fixed-effects regressions that capture crop-specific responses to
varying climatic conditions.
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Table 3: Summary description of the keys variables

Variable Description Source Computed (How) Unit

𝑇𝑖𝑡 Annual mean temperature for household 𝑖 at time 𝑡 ERA5-Land Average of daily temps °C
𝑃𝑖𝑡 Total precipitation for household 𝑖 at time 𝑡 ERA5-Land Sum of daily precip mm
log(𝑅𝑖𝑐𝑡) Log1p-transformed revenue Constructed log of 𝑅𝑖𝑐𝑡 –
𝑅𝑖𝑐𝑡 total revenue for household 𝑖 from the crop 𝑐 at time 𝑡 LSMS-ISA Declaration of the household BIRRa

𝑌𝑖𝑐𝑡 Yield for household 𝑖 from it major crop 𝑐 at time 𝑡 LSMS-ISA Quantity/area kg/ha
log(𝑌𝑖𝑐𝑡) Log1p-transformed yield Constructed log of 𝑌𝑖𝑐𝑡 log(kg/ha)

a(Ethiopia devise)

The Table 3 provides summary statistics of key variables across all five waves of the LMSIA dataset. The variables display
considerable variability, both cross-sectionally and over time, which justifies our empirical strategy that includes household
and time fixed effects. These descriptive statistics displays the heterogeneity in climatic exposure and agricultural outcomes
across space and time. The retention rate chart Figure 19 illustrates the proportion of households that remained in the panel
across successive survey waves. Starting from wave 1, the panel shows an exceptionally high level of household retention,
consistently above 99 percent throughout the study period. A slight increase is observed between waves 2 and 3, where
retention reaches 100 percent, likely reflecting data cleaning adjustments or successful follow-ups of previously missing
households. Although a small decline is noted in wave 4 and a more visible drop in wave 5, the overall attrition remains
minimal. This high degree of panel stability is critical for the reliability of longitudinal analysis, as it ensures that changes
observed over time are less likely to be driven by sample loss or selection bias. Therefore, the dataset provides a strong
foundation for examining dynamic processes such as behavioral responses to climate variation or shifts in agricultural practices
over time.

2.2 Descriptive Statistics

Table 4 presents summary statistics for the main variables used in the analysis, based on household-level observations across
five waves of the LSMS-ISA dataset in Ethiopia. The average annual temperature across all household–year combinations is
approximately 20.67°C, with considerable variation (min = 14.01°C, max = 30.89°C).This reflects Ethiopia’s diverse agroe-
cological zones from highland to lowland areas. Annual precipitation also shows wide dispersion, with a mean of 849.77 mm,
ranging from semi-arid to high-rainfall regions.

Table 4: Summary statistics of the Key variables

Variable Unit Mean S.Error Min Max

Temperature °C 20.67 2.98 14.01 30.89
Precipitation mm 849.77 65.90 585.90 1,146.97
log(Yield) log(kg/ha) 8.04 2.23 -1.42 8.04
log (Income) log(BIRR) 103 80.41 0 311

The average yield is 84.25 kg/ha, but the high standard deviation and a maximum value of 460 kg/ha indicate large disparities
in productivity, likely due to heterogeneity in crop types, farming practices, and climate exposure. The cultivated area per
observation averages 0.0234 ha, with extreme values reaching over 0.1300 ha, though the minimum value suggests some
households operate on small plots. The log-transformed yield variable helps address skewness in the yield distribution, which
is typical in smallholder datasets. For the summary by wave see table Table 9.
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Figure 3: Distribution of the Main variables
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The correlation matrix in Table 8 illustrates the linear relationships between key climatic variables used in the regression
models. As expected, the strongest correlation appears between tmean_wave_mod and its squared term tmean_mod_c_sq (r
= 0.24), reflecting the mathematical link between a variable and its quadratic transformation. A similar pattern, though weaker,
is observed between precip_mod and its square (precip_mod_c_sq), with negligible correlation (r ≈ -0.01), suggesting that
precipitation and its variation are more dispersed and potentially nonlinear in effect. The correlation between temperature and
precipitation variables (both in level and squared forms) remains low (r< 0.30), indicating that multicollinearity is unlikely to
be a major concern in the regression models. These results justify the inclusion of both linear and squared terms of temperature
and precipitation in the model to capture potential nonlinear effects of climate on crop yield. Figure 14 examines the panel
structure by showing household presence across waves.

The heatmap on the left shows how many households are simultaneously present in each pair of waves. Diagonal values
confirm strong longitudinal retention, with over 3,800 households consistently present from wave 1 through wave 5. Off-
diagonal values remain high, suggesting robust panel continuity. On the right, the percentage matrix shows the proportion of
households that persist from one wave to the next. With retention rates above 99% between consecutive waves (and 100%
from wave 4 to 5), the panel is remarkably balanced. This strong household presence across waves is critical for fixed effects
models and ensures the reliability of within-household comparisons over time.

Figure 3 illustrates the distribution of key climatic and agricultural variables across the five survey waves. The precipitation
panel shows relatively consistent distributions across waves, though with some variation in skewness. Wave 5 appears to
have slightly higher cumulative rainfall, which may reflect interannual variability or shifts in the agricultural calendar. In the
annual mean temperature panel, distributions are clustered between 15°C and 25°C, consistent with Ethiopia’s predominantly
temperate to subtropical climate zones. However, Wave 1 shows a slightly warmer profile, possibly due to seasonal timing
or sample composition in that round. The log of yield panel indicates considerable variation across waves, with Wave 3
presenting a more concentrated and higher productivity distribution. This likely reflects favorable growing conditions or
changes in crop composition during that year. Lastly, the days above 26°C panel reveals stark differences across waves. Wave
1 exhibits notably more heat stress days, with a high-density peak above 100 days. This confirms the importance of including
heat exposure in the analysis, particularly given its crop-damaging potential highlighted in agronomic literature ( Schlenker
& Roberts, 2009; Deschênes & Greenstone, 2011) . Together, these distributions underscore the climatic variability Ethiopian
smallholders face over time and justify the use of panel fixed-effects models with crop-specific climate interactions. Figure 15
displays the distribution of all the crops yield (taking in logarithm) in the full sample.
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3 Econometric Models and Methodology

This study adopts a panel-data econometric approach to estimate the heterogeneous impact of climate variables on agricultural
performance and household welfare across Ethiopian smallholders. The empirical analysis is based on a household–crop–year
unbalanced panel, where the unit of observation is the household’s primary crop in a given agricultural wave. The primary crop
is defined as the cropwith the largest cultivated area (or revenue share) within the household’s portfolio, ensuring comparability
across households and waves.

We employ fixed-effects regression with climate–crop interaction terms and nonlinear specifications to capture both marginal
and threshold effects of climate exposure. Household and wave fixed effects absorb unobserved, time-invariant heterogeneity
(𝛼𝑖) (e.g., soil quality, irrigation infrastructure, managerial ability) and national shocks (𝜆𝑡) (e.g., inflation, policy reforms).
Unlike random effects models, the fixed-effects estimator does not assume independence between unobserved heterogeneity
and regressors; instead, it identifies effects from within-household and within-crop variation over time (Wooldridge, 2010).

3.1 Intensive Margin

Crop yield and the climate variables

The analytical framework of this study is grounded in the neoclassical theory of production, where agricultural output is
modeled as a function of multiple inputs, including labor, land, and most importantly for this study, climatic factors. Following
the literature (e.g., Burke et al., 2015 ; Schlenker & Roberts, 2009 ), we assume a multiplicative production structure that
integrates both agro-climatic conditions and household-specific unobservables:

𝑌𝑖𝑐𝑡 = 𝐴𝑖 ⋅ 𝑒𝑓𝑘(𝑃𝑖𝑡,𝑇𝑖𝑡) ⋅ 𝑋𝑖𝑐𝑡 ⋅ 𝑈𝑖𝑐𝑡

where 𝑌𝑖𝑐𝑡 is crop yield for household 𝑖, crop 𝑐, in wave 𝑡; 𝐴𝑖 captures time-invariant household-specific productivity factors
(e.g., soil quality, farmer skill); 𝑓𝑇 (⋅) and 𝑓𝑃 (⋅) represent the effect of temperature and precipitation; 𝑋𝑖𝑐𝑡 captures other
productive inputs (land, fertilizer); and 𝑈𝑖𝑐𝑡 is a stochastic error term. Taking logarithm of the yields, give the following the
estimating equation:

log(𝑌𝑖𝑐𝑡) = log(𝐴𝑖) + 𝑓𝑘(𝑃𝑖𝑡, 𝑇𝑖𝑡) + log(𝑋𝑖𝑐𝑡) + log(𝑈𝑖𝑐𝑡)

This log-linearization is standard in the empirical agricultural economics literature (Lobell et al., 2011) as it reduces skew-
ness in yield data and allows percentage interpretation of effects. To allow for nonlinear climatic effects and heterogeneous
responses across crops, we follow a strategy similar to Burke et al., 2015, who modeled temperature effects on economic
outcomes using quadratic forms, and adopt the following flexible specification:

𝑓𝑘(𝑇𝑖𝑡, 𝑃𝑖𝑡) = ∑
𝑍∈{𝑃𝑖𝑡,𝑇𝑖𝑡}

𝑓𝑘(𝑍) = 𝑓𝑘(𝑇𝑖𝑡) + 𝑓𝑘(𝑃𝑖𝑡) = 𝛽1𝑘𝑇𝑖𝑡 + 𝛽2𝑘𝑇 2
𝑖𝑡 + 𝛾1𝑘𝑃𝑖𝑡 + 𝛾2𝑘𝑃 2

𝑖𝑡

where the coefficients 𝛽1𝑘, 𝛽2𝑘, 𝛾1𝑘, 𝛾2𝑘 vary by crop 𝑘. This formulation captures both marginal climate effects and threshold
nonlinearities, such as the yield-damaging effects of heat beyond optimal levels (Deschênes & Greenstone, 2011) . Critically,
by interacting temperature and precipitation (and their squares) with crop dummies, we allow each crop to have its own
climatic response curve. This is theoretically justified: different crops have different heat and water stress thresholds due to
their physiological characteristics. For instance, teff or maize is more heat-sensitive than cassava or millet, which are known
to be more resilient to drought and high temperatures ( FAO, 2021;Jarvis et al., 2012 ).

𝑓𝑘(𝑇𝑖𝑡, 𝑃𝑖𝑡) = ∑
𝑍∈{𝑃𝑖𝑡,𝑇𝑖𝑡}

𝑓𝑘(𝑍) ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘 = [𝑓𝑘(𝑇𝑖𝑡) + 𝑓𝑘(𝑃𝑖𝑡)] ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘

We estimate the following fixed-effects model:

log(𝑌𝑖𝑐𝑡) = 𝛼𝑖 + 𝜆𝑡 + 𝛿𝑐 +
𝐶

∑
𝑘

𝑓𝑘(𝑇𝑖𝑡, 𝑃𝑖𝑡) + 𝜀𝑖𝑐𝑡
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log(𝑌𝑖𝑐𝑡) = 𝛼𝑖 + 𝜆𝑡 + 𝛿𝑐 +
𝐶

∑
𝑘

∑
𝑍∈{𝑃𝑖𝑡,𝑇𝑖𝑡}

𝑓𝑘(𝑍) ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘 + 𝜀𝑖𝑐𝑡

• 𝛼𝑖: household fixed effects, control for unobserved, time-invariant household characteristics;
• 𝜆𝑡: wave fixed effects, absorb year-specific shocks (e.g., price variation, national policy changes);
• 𝛿𝑐: crop fixed effects, account for differences in baseline yields across crops;
• 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘: dummy variable indicating whether crop 𝑐 equals crop 𝑘;
• 𝜀𝑖𝑐𝑡: idiosyncratic error term.

This specification captures both the level effect of each crop (via 𝛿𝑐) and its differential sensitivity to temperature and rainfall
via the interaction terms. The inclusion of squared terms enables identification of nonlinear yield responses, commonly ob-
served in agronomic literature (Schlenker & Roberts, 2009 ; Guiteras, 2009 ). Agricultural responses to climate are inherently
heterogeneous. Grouping crops together in a pooled model would assume a common response to temperature and rainfall—an
assumption that is clearly unrealistic. Different crops have distinct growing seasons, root depths, evapotranspiration rates, and
resistance to extreme weather events. By allowing coefficients to vary by crop, this model addresses one of the key critiques
of early empirical work, which averaged across crops or assumed homogeneous sensitivities (Lobell & Field, 2007). More-
over, interacting climate with crop dummies approximates a generalized difference-in-differences structure where each crop
type experiences the same climatic treatment but may respond differently. This mirrors the strategy in panel DID studies that
compare units with heterogeneous exposure to treatment across time (Angrist & Pischke, 2009) .

Identification Strategy and Assumptions

Identification relies on within-household, within-crop, over-time variation in climate exposure. Household fixed effects (𝛼𝑖)
absorb unobserved time-invariant heterogeneity (e.g., land quality, altitude, persistent soil fertility, irrigation infrastructure, or
farmer ability), while time fixed effects (𝜆𝑡) capture common shocks such as inflation, fertilizer subsidies, or pest outbreaks.
Crop fixed effects (𝛿𝑐) control for systematic biological differences across crops. Under these controls, the fixed-effects
estimator isolates the impact of climatic variation on yields and revenues. Formally, we assume strict exogeneity:

𝔼[𝜀𝑖𝑐𝑡 ∣ 𝑇𝑖𝑡, 𝑇 2
𝑖𝑡, 𝑃𝑖𝑡, 𝑃 2

𝑖𝑡, 𝛼𝑖, 𝜆𝑡, 𝛿𝑐] = 0

which implies that, conditional on the observed climate variables and fixed effects, the error term is mean-independent of the
regressors. This assumption is plausible because farmers cannot manipulate temperature or rainfall.

However, a key potential challenge arises if households adjust their input use (e.g., fertilizer, labor, irrigation) in response
to climate conditions. In this case, climate variables would influence yields both directly and indirectly via input decisions,
potentially violating strict exogeneity. If so, the estimated coefficients may overstate or understate the true biophysical effect
of climate on productivity. This concern is common in the climate–agriculture literature (e.g., Burke et al., 2015) .

To mitigate this risk, we interpret our coefficients as the reduced-form effect of climate exposure, encompassing both direct
biophysical impacts and behavioral responses. In robustness checks, we control for time-varying input variables (where
available) to test whether results are sensitive to input adjustments. This approach ensures that while identification is not
perfect, the estimates remain informative about the total effect of climate variability on household agricultural outcomes.

The model we have to estimate is:

log(𝑌𝑖𝑐𝑡) = 𝛼𝑖⏟
Household FE

+ 𝜆𝑡⏟
Time FE

+ 𝛿𝑐⏟
Crop FE

+
𝐾

∑
𝑘=1

⎛⎜
⎝

𝛽1𝑘𝑇𝑖𝑡 + 𝛽2𝑘𝑇 2
𝑖𝑡⏟⏟⏟⏟⏟⏟⏟

Temperature

+ 𝛾1𝑘𝑃𝑖𝑡 + 𝛾2𝑘𝑃 2
𝑖𝑡⏟⏟⏟⏟⏟⏟⏟

Precipitation

⎞⎟
⎠

⋅ 𝟙{𝐶𝑟𝑜𝑝𝑖𝑐=𝑘} + 𝜀𝑖𝑐𝑡

The error term can be written as:

𝜀𝑖𝑐𝑡 = 𝑓(𝛼𝑖, 𝜆𝑡, 𝛿𝑐)⏟⏟⏟⏟⏟
Fixed effects component

+ 𝑔(𝑇𝑖𝑡, 𝑃𝑖𝑡)⏟⏟⏟⏟⏟
Climate relationship

+ 𝜂𝑖𝑐𝑡⏟
Idiosyncratic shock
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A key condition for fixed-effects regressions is that households experience enough variation in climate over time. Since
household fixed effects absorb all time-invariant characteristics (e.g., soil quality, altitude, farmer skill), the coefficients are
identified only from within-household variation in temperature and rainfall across survey waves. If climate variables were
constant for a household, their effects could not be estimated. Fortunately, Ethiopia’s strong inter-annual variability in rainfall
and growing-season temperatures, combined with its diverse agro-ecological zones, provides ample variation to meet this
requirement (Burke et al., 2015; Schlenker & Roberts, 2009 ).

Moreover, because the model interacts climate variables (and their squares) with crop dummies, it is also necessary that
crops vary across households and over time. If a crop were cultivated by only one household, or by the same households in
all waves, the interaction terms would be perfectly collinear with household fixed effects, making coefficients unidentified.
Reliable estimation therefore requires that households switch crops across waves and that each crop be cultivated by multiple
households. This condition is satisfied in our data, which cover a wide range of crops and crop rotations. Standard errors
are clustered at the household level to account for both serial correlation and heteroskedasticity, following Cameron & Miller
(2015).

Temperature bins and crop yields responses

My study aims to quantify the impact of temperature variability on household-level agricultural performance, measured as
either log crop yield, by capturing the non-linear and crop-specific responses to daily temperature exposure during the growing
season. Unlike standard linear or quadratic climate models that assume a fixed response across units, I allow temperature
effects to vary both non-linearly (across temperature ranges) and by crop type, which is essential in contexts where households
specialize in different crops that have distinct heat tolerances and growth requirements. To achieve this, I follow a flexible,
semi-parametric regression strategy inspired by Schlenker & Roberts, 2009, discretizing the temperature distribution into
small bins and interacting these with the household’s main crop. We begin with a general model where the outcome depends
on the integral of a temperature response function 𝑔𝑘(ℎ), which maps temperature exposure ℎ to economic performance for
crop 𝑘:

𝑦𝑖𝑡 = ∫
ℎ

ℎ
𝑔𝑘(ℎ) ⋅ 𝜙𝑖𝑡(ℎ) 𝑑ℎ + 𝑓(𝑃𝑖𝑡) + 𝛼𝑖 + 𝜆𝑡 + 𝜀𝑖𝑡 (A1)

To investigate the heterogeneous effects of temperature on household-level agricultural outcomes, we adopt a flexible semi-
parametric specification that discretizes the temperature distribution into bins and interacts them with the household’s main
crop. This step-function approach allows for non-linear and crop-specific responses to daily temperature exposure, without
imposing a rigid functional form on the relationship. Compared to parametric alternatives such as Chebyshev polynomials or
piecewise linear splines, this specification offers two key advantages. First, it provides a high degree of interpretability: each
estimated coefficient directly reflects the marginal effect of an additional day in a specific temperature range for a given crop,
facilitating empirical temperature response curve recovery. Second, it aligns with agronomic intuition and existing literature
(e.g., Schlenker & Roberts, 2009), which highlights that crops differ substantially in their sensitivity to heat, often in a non-
monotonic fashion. While smoother functional forms may reduce estimation noise, they come at the cost of masking threshold
effects or abrupt changes in slope that may be biologically meaningful.

In contrast, our bin-based approach accommodates sharp transitions in response and captures localized effects of heat stress.
Furthermore, we control for precipitation through a second-order polynomial to account for its known non-linear impact on
crop productivity. This specification strikes a balance between flexibility, clarity, and empirical credibility, and is particularly
suited for our setting where households grow different crops, often under varying climatic conditions. This model assumes
that each day’s temperature contributes to outcomes cumulatively and that this contribution depends on how hot or cold that
day is, through the unknown function 𝑔𝑘(ℎ). Since 𝑔𝑘(ℎ) is unknown and daily temperature is continuous, we approximate
the integral using a discretized version. We divide the temperature space into equal-width bins of 1°C. For each bin 𝑗 ∈ 𝒥,
we count the number of days 𝐷(𝑗)

𝑖𝑡 household 𝑖 is exposed to that temperature bin in year 𝑡:

𝐷(𝑗) = Φ𝑖𝑡(ℎ𝑗+1) − Φ𝑖𝑡(ℎ𝑗)
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Where Φ𝑖𝑡(ℎ𝑗) is the cumulative distribution of temperature up to ℎ𝑗 and ℎ𝑗 and ℎ𝑗+1 are the lower and upper bounds of bin
𝑗 (e.g., [12,13), [13,13), …) We then estimate the following regression model:

𝑦𝑖𝑡 = ∑
𝑗∈𝒥

∑
𝑘∈𝒦

𝜃𝑗𝑘 ⋅ 𝐷(𝑗)
𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘 + 𝑓(𝑃𝑖𝑡) + 𝛼𝑖 + 𝜆𝑡 + 𝜀𝑖𝑡 (A2)

Where:

• 𝜃𝑗𝑘 measures the marginal effect of one additional day in bin 𝑗 for households whose main crop is 𝑘;

• The interaction 𝐷(𝑗)
𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘 allows for different shapes of 𝑔𝑘(ℎ) depending on the crop.

The model includes household fixed effects (𝛼_𝑖) to control for all time-invariant unobserved characteristics such as land
quality, managerial ability, or long-term access to assets and infrastructure. Year fixed effects (𝜆_𝑡) are added to capture
aggregate shocks such as macroeconomic fluctuations, policy reforms, or widespread climatic anomalies. Crop fixed effects
are not included separately, since crop dummies are already interacted with temperature bins to capture crop-specific thermal
sensitivities. Adding them would be redundant and potentially collinear with household effects, especially for households
cultivating the same crop over multiple years.

Identification therefore relies on within-household variation over time in both temperature exposure and crop choice, allowing
climate effects to differ by crop without imposing restrictive functional forms. Equation (A2) is estimated using the within
estimator, which demeans the data to eliminate household fixed effects and focus on within-unit variation. Estimation is per-
formed using OLS, with standard errors clustered at the household level to correct for heteroskedasticity and serial correlation.

Each coefficient ̂𝜃𝑗𝑘 measures the marginal effect of one additional day in temperature bin 𝑗 on the logarithm of agricultural
performance for households cultivating crop 𝑘. Interpreted in percentage terms, it reflects the proportional change in yield
or revenue relative to the omitted reference bin. Plotting the full set of ̂𝜃𝑗𝑘 coefficients across all bins yields the empirical
temperature response function ̂𝑔𝑘(ℎ), which provides a flexible and nonparametric representation of crop-specific climate
sensitivity.

3.2 Economic Margin

To deepen the analysis beyond physical productivity, this model investigates how climate variability affects broader mea-
sures of household welfare, namely, total agricultural income of the households. Unlike yield-focused regressions that isolate
biophysical crop responses, this approach captures the economic consequences of climate shocks at the household level, en-
compassing behavioral adjustments, crop portfolios, and adaptation strategies. The dependent variable is the logarithm of total
household income, allowing for multiplicative effects and variance stabilization. The specification interacts both temperature
and precipitation (as well as their squared terms) with the primary crop cultivated by each household, enabling the marginal
effects of climate to vary across farming systems.

This formulation recognizes that households specialized in crops such as maize or sorghummay differ significantly in both ex-
posure to and capacity to absorb climate-related risks. To capture the well-documented nonlinear effects of weather, quadratic
terms are included, reflecting that moderate deviations may be tolerable, or even beneficial, while extreme conditions become
increasingly harmful. The model is estimated using the following fixed effects panel regression:

log(𝑅𝑖𝑡) = 𝛼𝑖 + 𝜆𝑡 + ∑
𝑘

(𝛽1𝑘𝑇𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘 + 𝛽2𝑘𝑇 2
𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘 + 𝛾1𝑘𝑃𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘 + 𝛾2𝑘𝑃 2

𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘) + 𝜀𝑖𝑡

This structure follows the empirical strategies of Schlenker and Roberts (2009) and Burke et al. (2015) , who emphasize
the importance of allowing for nonlinearity and crop-specific climate sensitivity. Household fixed effects (𝛼𝑖) control for
unobserved, time-invariant characteristics such as land quality or managerial skill, while year fixed effects (𝜆𝑡) absorb national-
level shocks, policy changes, and aggregate trends. The crop fixed effect is implicitly addressed via the interaction terms,
which allow each crop to exhibit its own climate response profile. Standard errors are clustered at the household level to
account for potential autocorrelation and heteroskedasticity. Overall, this model offers a flexible yet behaviorally grounded
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framework for identifying the heterogeneous effects of climate variability on rural livelihoods.

Explanation of Crop Fixed Effects Usage in Yield vs. Revenue Models

The inclusion of crop fixed effects differs between the yield and revenue models due to the structure of the data and the
nature of the dependent variable in each case. In the yield model, the unit of observation is at the household–crop–year level,
meaning that each household can report yields for multiple crops in the same year. As a result, crop fixed effects are necessary
to control for systematic differences in potential yields across crop types, such as biological productivity, growth cycles, and
input requirements, which could otherwise confound the estimated effect of climate variables. In contrast, the revenue model
aggregates income at the household–year level, with each household assigned only one primary crop per period. Because
there is no within-household variation in crop type at a given time, crop fixed effects would be either perfectly collinear with
household fixed effects or absorbed by them, making their inclusion redundant or unidentifiable.

Instead, the revenue model captures crop-specific climate sensitivity through interaction terms between climate variables and
the household’s main crop, allowing for differentiated marginal effects while preserving model identifiability. This difference
in specification reflects the underlying data structure and ensures that variation used to estimate coefficients is meaningful and
not mechanically eliminated by collinearity.

3.3 Extensive Margin of Adaptation: Household main crop choice

To analyze how climate shapes farmers’ decisions to cultivate specific crops, (a central question to understand adaptation on
the extensive margin), I estimate a fixed-effects panel model where the dependent variable is a binary indicator for whether a
given crop is cultivated by a household in a given year. Temperature is modeled semi-parametrically using the number of days
falling into specific temperature bins rather than average temperature and its square, which are more restrictive and potentially
misleading.

This binning strategy captures the nonlinear and asymmetric nature of crop-climate relationships, especially around heat
thresholds. It is more behaviorally realistic: two households may face identical seasonal average temperatures, yet one may
endure several extremely hot days that alter planting decisions, a nuance that average temperature fails to detect. Precipitation
is included through a second-order polynomial to account for the well-documented nonlinear effects of rainfall, where both
scarcity and excess can deter cultivation. This modeling approach is original in two ways. First, while most studies of climate
impacts in agriculture focus on the intensive margin, such as yields conditional on planting, we shift attention to the extensive
margin, i.e., the decision to plant or not, which is equally crucial in climate adaptation (Kala, 2017 ; Emerick et al., 2016 ).

Second, our interaction of detailed daily temperature distributions with crop-specific binary outcomes within a household fixed
effects framework provides a novel, granular lens on how climate influences farm-level crop allocation in practice. Unlike
aggregate studies or those assuming homogeneous climate responses across crops, our method allows climate sensitivity to
vary flexibly by temperature intensity and by crop type, within the same population. By leveraging household panel data and
fine-grained climate exposure, this model provides new insights into the behavioral dimensions of climate risk management
in smallholder systems. We model the probability that household 𝑖 cultivates crop 𝑘 in year 𝑡, denoted by 𝐶𝑢𝑙𝑡𝑖𝑘𝑡 ∈ {0, 1},
as a function of climatic variables and fixed effects. The dependent variable equals 1 if crop 𝑘 is cultivated, and 0 otherwise.
We specify a semi-parametric fixed effects panel model as follows:

𝐶𝑖𝑘𝑡 = ∑
𝑗∈𝒥

𝜃(𝑘)
𝑗 𝐷(𝑗)

𝑖𝑡 + 𝛾(𝑘)
1 𝑃𝑖𝑡 + 𝛾(𝑘)

2 𝑃 2
𝑖𝑡 + 𝛼𝑖 + 𝜆𝑡 + 𝜀𝑖𝑘𝑡 (EM)

In this model, 𝐶𝑖𝑘𝑡 is a binary variable equal to 1 if household 𝑖 cultivates crop 𝑘 in year 𝑡, and 0 otherwise. The main
explanatory variables are 𝐷(𝑗)

𝑖𝑡 , which denote the number of days during the growing season that fall within temperature
bin 𝑗 (e.g., [14–16°C], [16–18°C], etc.), and 𝑃𝑖𝑡 and 𝑃 2

𝑖𝑡, which represent the total precipitation and its square, respectively,
capturing the potential non-linear impact of rainfall. The coefficients 𝜃(𝑘)

𝑗 measure the marginal effect of one additional day
in temperature bin 𝑗 on the probability of planting crop 𝑘, while 𝛾(𝑘)

1 and 𝛾(𝑘)
2 capture the linear and quadratic effects of

precipitation. Household fixed effects 𝛼𝑖 control for time-invariant unobserved heterogeneity across households, such as
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soil quality, land access, or long-term preferences, and year fixed effects 𝜆𝑡 absorb time-specific shocks like national price
fluctuations or policy changes. The error term 𝜀𝑖𝑘𝑡 captures all remaining unexplained variation.

The model satisfies key econometric assumptions that ensure consistent and interpretable estimates. First, although climatic
effects are modeled non-linearly with respect to temperature and precipitation, the specification remains linear in parameters
(𝜃(𝑘)

𝑗 , 𝛾(𝑘)
1 , 𝛾(𝑘)

2 ), allowing estimation via OLS or fixed-effects logistic regression. This linear-in-parameters property ensures
both tractability and clear interpretation. Second, we assume strict exogeneity, i.e. 𝐸[𝜀𝑖𝑘𝑡 ∣ 𝐷(𝑗)

𝑖𝑡 , 𝑃𝑖𝑡, 𝛼𝑖, 𝜆𝑡] = 0, which is
plausible since farmers cannot influence temperature or rainfall, even though they may adapt behaviorally. Third, to avoid
perfect multicollinearity, one temperature bin (typically a moderate range such as [23–24°C]) is omitted as the reference
category, while precipitation variables are entered in linear and quadratic form to capture non-linear effects. This quadratic
specification reflects the empirically observed hump-shaped relationship: moderate rainfall encourages planting, whereas both
deficits and excesses reduce cultivation likelihood (Schlenker and Roberts (2009); Dell et al., 2014 ).

Fourth, identification requires sufficient within-household variation in climate and crop choice over time. This condition is
met in our multi-wave panel, where households face changing weather conditions and do not always cultivate the same crops
each year. Finally, because households are observed repeatedly, standard errors are clustered at the household level to account
for serial correlation and heteroskedasticity. Importantly, simultaneity bias is avoided since planting decisions are made ex-
ante, before the realization of harvest outcomes, and climate variables are exogenous. Thus, the estimated coefficients can be
interpreted as causal reduced-form effects of climate on crop choice.
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4 Results and Discussion

4.1 Intensive Margin

Crop yield with linear and nonlinear effect of climate variable

The regression results (Table 11, Figure 4, Figure 5) highlight strong heterogeneity in crop-specific responses to temperature
and precipitation, this underscore the value of disaggregated analysis.

Figure 4: Temperature on Crop yield
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Quadratic Effect 

As we can notice, among the cereals, rice, sorghum, millet, and Teff, yields respond positively to moderate warming but
decline beyond critical thresholds, this confirms the convex temperature–yield relationship documented by Schlenker and
Roberts (2009) and Lobell et al. (2011) . For instance, rice shows the largest effect (+0.47 per +1°𝐶 , –0.026 quadratic),
followed by sorghum (+0.38; –0.016) andmillet (+0.33; –0.015). Teff is less responsive (+0.24; –0.008) but highly rainfall-
dependent (+0.005), consistent with Seo & Mendelsohn (2008) . This reinforces cereals’ dual vulnerability to both drought
and erratic rainfall, emphasizing the need for resilient varieties and soil-moisture conservation. When looking to the fruits,
Avocado (+0.59; –0.021) and mango (+0.24; –0.008) benefit from moderate warming but decline under heat stress. In
contrast, banana and lemon show small, mostly insignificant coefficients, indicating greater resilience. Precipitation effects
are negligible, highlighting irrigation rather than rainfall as the key adaptation lever.

In vegetables, Garlic (+0.59; –0.017) and onion (+0.55; –0.016) show strong but nonlinear warming responses: high gains
up to a threshold, then rapid decline, echoing Di Falco&Chavas (2009). Kale stands out as mainly rainfall-sensitive (+0.005),
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with temperature effects insignificant, pointing to the importance of regular moisture and irrigation planning.

Figure 5: Precipitation Effect on Crop yield
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Quadratic Effect

Besides, the legumes and pulses like Beans (+0.74; –0.016), groundnuts (+0.36; –0.010), and peas (+0.27; –0.004) also
follow the positive-then-decline pattern, though peas uniquely benefit from rainfall (+0.006). This aligns with Lin (2011)
and Kassie et al. (2014) , confirming legumes’ high water sensitivity. Industrial crops. Sesame shows robust and stable
temperature benefits (+0.42) without strong nonlinearities, while tobacco (+0.47; –0.017) reveals previously undocumented
nonlinear effects in African settings, suggesting vulnerability under excessive heat.

Two insights stand out. First, the exceptionally large positive effects for rice and avocado diverge from tropical studies, likely
due to Ethiopia’s cooler baseline. Second, significant quadratic precipitation terms, especially for tobacco and groundnuts
highlight yield risks not just from drought but also from rainfall excess, a dimension rarely emphasized in African research.

As an implication, we can say that climate change will not affect Ethiopian crops uniformly: rice and sesame may benefit from
moderate warming, while Teff and garlic are highly exposed to heat and rainfall extremes. Policy must therefore avoid one-
size-fits-all solutions. Instead, crop and region-specific adaptation heat and drought-tolerant varieties, targeted irrigation, and
context-specific extension are essential. These findings support Ethiopia’s CRGE strategy while enriching global evidence on
highland tropical agriculture.
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Non linear Model: Binning Temperature

The binmodel allows for amore flexible estimation of the relationship between temperature and crop yield, free from restrictive
functional assumptions. When examining yield responses across temperature intervals, we gain insight into thresholds beyond
which yield effects become more pronounced.

This subsection examines Teff, Wheat, Sorghum, Maize, and Millet, Ethiopia’s principal cereals, focusing on their heteroge-
neous temperature responses.
For Teff, yields remain relatively stable between 14–20∘C, peak around 24–26∘C, and then decline sharply beyond 27∘C. This
result is consistent with FAO (2010), which identifies an optimal range of 18–27∘C, and with Alemayehu & Bewket (2017),
who report similar patterns in the Ethiopian highlands.
Wheat displays optimal performance between 18–23∘C, but yields drop rapidly above 24∘C, becoming strongly negative be-
yond 27∘C. This aligns with Asseng et al. (2015), who estimate yield losses of 6% per +1∘C above the optimum, and Lobell
et al. (2012), who emphasize heat sensitivity during flowering and grain filling.

Table 5: Temperature Bin Effects on Log Yield (Cereals)

Maize Millet Sorghum Teff Wheat

Temp Bin Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE

[14; 15[ 0.185*** (0.020) 0.167 (0.211) 0.424*** (0.048) 0.266*** (0.059) 0.283*** (0.028)
[15; 16[ 0.184*** (0.016) 0.200** (0.066) 0.318*** (0.029) 0.326*** (0.046) 0.368*** (0.052)
[16; 17[ 0.119*** (0.015) 0.288*** (0.050) 0.300*** (0.026) 0.163*** (0.039) 0.250*** (0.030)
[17; 18[ 0.074*** (0.014) 0.103. (0.058) 0.190*** (0.020) 0.171*** (0.030) 0.176*** (0.040)
[18; 19[ 0.078*** (0.013) 0.080 (0.092) 0.163*** (0.019) 0.108*** (0.030) 0.100*** (0.027)
[19; 20[ 0.027* (0.013) 0.125* (0.058) 0.081*** (0.017) 0.061* (0.030) 0.034 (0.025)
[20; 21[ -0.019 (0.013) 0.070 (0.044) 0.045** (0.016) 0.008 (0.027) -0.028 (0.026)
[21; 22[ -0.050*** (0.013) 0.066 (0.066) -0.044* (0.018) -0.033 (0.029) -0.104*** (0.025)
[22; 23[ -0.068*** (0.013) 0.102 (0.062) -0.103*** (0.021) -0.030 (0.029) -0.137*** (0.033)
[23; 24[ -0.086*** (0.013) 0.028 (0.051) -0.131*** (0.021) -0.078** (0.029) -0.204*** (0.038)
[24; 25[ -0.109*** (0.014) -0.057 (0.066) -0.168*** (0.028) -0.118** (0.041) -0.262*** (0.046)
[25; 26[ -0.138*** (0.017) 0.057 (0.077) -0.202*** (0.035) -0.130** (0.045) -0.333*** (0.073)
[26; 27[ -0.168*** (0.019) -0.079 (0.085) -0.189*** (0.041) -0.183** (0.058) -0.403*** (0.089)
[27; 28[ -0.191*** (0.028) -0.113** (0.043) -0.249*** (0.064) -0.319*** (0.085) 0.211*** (0.023)
[28; 29[ -0.230*** (0.024) -0.276*** (0.044) -0.239* (0.094) -0.380*** (0.110) -0.180*** (0.024)
[29; +[ -0.216*** (0.032) -0.475*** (0.044) -0.288* (0.124) -0.225. (0.132) -0.630*** (0.025)

Fixed Effects
Household (hhid) Yes Yes Yes Yes Yes
Wave Yes Yes Yes Yes Yes

Stats
Obs 20,507 20,507 20,507 20,507 20,507
S.E.: Clustered by: hhid by: hhid by: hhid by: hhid by: hhid
R² 0.327 0.283 0.310 0.291 0.293
Within R² 0.063 0.002 0.038 0.012 0.015

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models include household (hhid) and wave fixed effects with standard
errors clustered at household level. The dependent variable is log agricultural yield. Temperature bins represent °C intervals (exact
ranges not specified in original data).

Sorghum demonstrates high thermal tolerance, with positive yield effects up to 26∘C and only marginal declines beyond 27∘C.
This finding supports its classification as a heat-resilient crop, consistent with Rosenow & Dahlberg (2000) and Rai et al.
(1999), who highlight sorghum’s adaptability to semi-arid and hot environments (up to 35–38∘C).
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For Maize, yields improve significantly under cooler conditions, with gains of +0.185 log points at 14–15∘C and +0.074
at 17–18∘C. However, coefficients turn negative beyond 21∘C, reaching –0.230 at temperatures above 27∘C. These results
are consistent with the nonlinear responses identified by Schlenker & Roberts (2009) and Lobell et al. (2011), while also
emphasizing that Ethiopia’s cooler highlands provide short-term benefits within a narrow optimal window.

Figure 6: Temperature Effects on Cereals yield
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Millet, often described as heat- and drought-tolerant, surprisingly shows cold sensitivity in the Ethiopian highlands: yields
increase modestly at 16–18∘C (+0.287 and +0.103 log points, respectively) but decline with further cooling. This contrasts
with global findings such as Lin (2011), suggesting that elevation-induced cold stress may override presumed resilience, and
calling for a reevaluation of “climate-smart” crop classifications in highland systems.
These results display the differentiated climate sensitivity of Ethiopia’s cereals. Sorghum appears best positioned under future
warming scenarios, Maize is highly vulnerable above 21∘C, while Teff and Wheat face significant risks from heat stress
despite moderate resilience within optimal ranges. The unexpected cold sensitivity ofMillet suggests that highland adaptation
strategies must be carefully tailored rather than relying on generalized assumptions about crop resilience.

The yield responses of Avocado, Mango, and Banana to temperature, illustrated in Figure 7, display patterns broadly consistent
with agronomic expectations, though with some discrepancies.
For Avocado, yields peak between 24–25∘C, with declines observed below 18∘C and above 27∘C. This aligns with Whiley et
al. (2002), who report optimal fruit set and growth within 20–25∘C, and with Wolstenholme (2011), who note that heat above
28∘C can cause flower abortion and fruit drop.
Mango yields are stable between 16–23∘C, peaking around 21–22∘C, but decline sharply beyond 25∘C. This result is consistent
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with Singh &Chadha (2001), who identify 22–24∘C as the optimal range for flowering and fruit development, while prolonged
exposure above 30∘C reduces fruit set.

Figure 7: Fruits yield response to climate change
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By contrast, Banana shows weaker and more uncertain yield responses, with slightly negative effects beyond 26∘C but wide
confidence intervals. According to Robinson & Galán Saúco (2010), the crop’s optimal range is 26–30∘C, with peak growth
around 27–29∘C. The weak signal in our model may reflect limited representation in hotter temperature bins, confounding
agroecological factors, or banana’s continuous growth cycle and high dependence on water availability, which weaken direct
temperature–yield linkages.
So, while Avocado and Mango benefit from moderate warming within narrow thresholds, both are highly vulnerable to heat
extremes. Their promotion should target mid-altitude zones where current temperatures remain within optimal ranges. In
contrast, banana adaptation strategies should prioritize water management and irrigation rather than temperature-specific in-
terventions, given its weaker modeled thermal response.

The temperature responses ofBeans, Peas, andGroundnuts reveal patterns that broadly align with agronomic literature, though
with some partial inconsistencies.
For Beans, yields peak between 19–21∘C and again around 26–28∘C, before declining sharply beyond 28∘C. This pattern is
consistent with Singh et al. (2018) and FAO (2021), who report that beans perform optimally within 18–24∘C, while heat stress
at higher temperatures disrupts flowering and pod filling. The decline observed in the model confirms these physiological
vulnerabilities.

Peas exhibit a strong positive yield response between 18–23∘C, followed by a steep decline after 24∘C. This mirrors agronomic
evidence showing that peas are highly sensitive to heat stress, particularly during reproductive stages (Choudhury et al., 2016).
The model thus captures the thermal threshold with precision, reinforcing its biological coherence.

For Groundnuts, yields peak between 21–24∘C, but decline rapidly after 25∘C. While agronomic references such as FAO
(2010) and Giller et al. (2004) describe groundnuts as relatively heat-tolerant up to 30∘C, the earlier decline in this model may
reflect compounding stressors, such as drought or poor soil fertility. This partial inconsistency suggests that yield sensitivity
could be mediated by interactive factors not fully captured in the model.
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Figure 8: Oleaginous nuts response to climate
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These results underline the importance of context-specific adaptation. For beans and peas, breeding programs for heat-tolerant
varieties and adjusted planting schedules will be crucial, especially as warming pushes average temperatures beyond their
narrow thermal windows. For groundnuts, the earlier-than-expected decline highlights the need to integrate soil fertility and
water management practices into climate adaptation strategies, ensuring resilience under combined stress conditions.

The results for vegetables and minor crops reveal heterogeneous but generally coherent temperature–yield relationships.
Garlic shows strong temperature sensitivity, with optimal yields between 20–25∘C, and marked declines below 15∘C and
above 27∘C. This aligns with its physiology as a cool-season crop: according to Singh et al. (2019), garlic performs best
within 12–25∘C, while heat stress reduces bulb size and quality.

Kale displays a moderately convex temperature response, with peak yields around 20–24∘C and significant declines beyond
26∘C. This pattern is consistent with FAO (2021), which reports that kale thrives at 15–24∘C, while high temperatures accel-
erate bolting and reduce leaf quality.
Potato has a narrow optimal range (16–22∘C), with steep yield declines beyond 24∘C. This result is consistent with Haverkort
et al. (2013), who show that tuberization is highly sensitive to heat, with optimal performance between 15–21∘C and inhibition
of tuber formation above 25∘C. The model confirms potato’s vulnerability to future warming scenarios.

Pumpkins exhibit increasing yields between 18–25∘C, with losses outside this interval. This finding agrees with FAO (2010),
which identifies 20–27∘C as optimal for pumpkin growth, avoiding frost and excessive heat.
For Shenkora (a lesser-documented Ethiopian legume), the model suggests an optimum around 23–25∘C. However, the erratic
responses observed below 20∘C likely reflect data limitations or omitted variables. The lack of agronomic studies on Shenkora
makes interpretation tentative.

Finally, Bekolo presents a smooth and biologically plausible response: yields rise between 18–25∘C before declining beyond
26∘C. This bell-shaped curve is typical of legumes with thermal thresholds around 25–28∘C (Singh et al., 2018; FAO, 2021).
The narrow confidence intervals strengthen the reliability of this result.
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Figure 9: Vegetables Yield response to climate
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These findings emphasize the need for tailored adaptation strategies. For heat-sensitive crops such as potato and garlic, breed-
ing for heat-tolerant varieties and shifting cultivation to cooler highlands will be essential. For crops like pumpkin and kale,
irrigation and shading practices could buffer heat stress.

The response of Basil and Coffee to temperature exhibits clear and biologically coherent patterns.
For Basil, yields increase significantly between 18–24∘C, peaking around 22–24∘C before showing a mild decline. This
is consistent with its preference for warm, temperate climates with optimal growth between 21–26∘C (Krause et al., 2016).
The sharp peak and narrow confidence intervals confirm the robustness of the estimates and their alignment with basil’s
physiological tolerance.

Coffee displays a well-defined bell-shaped curve, with yields peaking between 20–24∘C. This matches the ideal temperature
range for Arabica coffee, generally reported as 18–23∘C (DaMatta et al., 2007). Beyond 25∘C, the model shows a steep decline,
reflecting the documented effects of heat stress on both yield and bean quality. These results are highly coherent and confirm
established agronomic findings.
The response of Enset and Gesho also shows patterns consistent with ecological expectations, though with varying levels
of documentation. Enset, a staple crop in Ethiopian highlands, peaks around 22–24∘C, with marked declines beyond 26∘C.
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This aligns with evidence that enset thrives in cool tropical environments between 15–25∘C, while heat stress reduces its
productivity (Brandt et al., 1997); Borrell et al., 2020. The coherence is reinforced by the smooth slope and narrow confidence
bands in the model.

Figure 10: Oil seeds Yield response to climate change effect on crop yield
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ForGesho, yields peak between 20–24∘C, with sharp decreases outside this range. This pattern is consistent with its cultivation
in Ethiopia’s mid-altitude areas, where moderate temperatures prevail. Although formal agronomic studies are scarce, the
modeled response is in line with farmer-reported ecological suitability, lending credibility to the result.
These findings highlight the vulnerability of temperature-sensitive perennial crops like coffee and enset to warming trends,
stressing the need for shade management, irrigation, and highland-focused cultivation strategies. For less-documented crops
such as Gesho, further agronomic research would strengthen evidence for adaptive policy support.
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4.2 Economic Margin

Table 6: Effect of climate on Household revenue (Economic margin)

Temp. (lin) Temp. (quad) Precip. (lin) Precip. (quad)

Crop Coeff SE Coeff SE Coeff SE Coeff SE

Banana -0.0052 (0.0179) 0.0077. (0.0040) -0.0010* (0.0005) -0.0007 (0.0006)
Chat -0.1424* (0.0651) 0.0263* (0.0118) 0.0054** (0.0017) -0.0085 (0.0001)
Coffee 0.0058 (0.0240) -0.00138* (0.0061) -0.0005 (0.0006) -0.0067 (0.0008)
Enset -0.0324 (0.0276) 0.0211 *** (0.0062) 0.0002 (0.0007) -0.0004 (0.0009)
Garlic -0.811* (0.0241) -0.0042 (0.0104) -0.0003 (0.0010) -0.0007 (0.0005)
Gesho -0.0249 (0.0409) 0.022** (0.0085) 0.0010 (0.0009) -0.00034* (0.0005)
Kale 0.0305 (0.0331) 0.0004 (0.0079) -0.0015* (0.0007) -0.00025 (0.0001)
Maize 0.0014 (0.0096) -0.0071** (0.0025) -0.0003 (0.0003) 0.0003 (0.0004)
Mango -0.0222 (0.0416) -0.0003 (0.0011) -0.0043* (0.0022) 0.00075 (0.0002)
Millet -0.0112 (0.0389) -0.0048 (0.0117) 0.0054* (0.0029) -0.00019 (0.0004)
Pepper 0.1190 (0.0852) 0.0030 (0.0118) -0.0036* (0.0018) -0.00017 (0.00031)
Shenkora -0.2293* (0.1068) -0.0024 (0.0356) 0.0050 * (0.0025) -0.00025 (0.0008)
Sorghum -0.00023 (0.0233) -0.0278*** (0.0068) -0.0003 (0.0006) 0.00017 (0.0007)
Teff 0.0031 (0.0350) -0.0159 * (0.0077) -0.00007 (0.0009) 0.00032. (0.0002)

Fixed Effects
Household (hhid) Yes Yes Yes Yes
Wave Yes Yes Yes Yes

Statistics
Observations 20,507 20,507 20,507 20,507
S.E.:Clustered by:hhid by:hhid by:hhid by:hhid
R-squared 0.55545 0.55545 0.55545 0.55545
Within R-squared 0.37529 0.37529 0.37529 0.37529

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. Coefficients represent the impact of climate variables (temperature and precipitation,
linear and quadratic terms) on crop revenues. Quadratic precipitation terms are multiplied by 105 for readability.

Table 6 reports the effects of temperature and precipitation on household agricultural revenue. Unlike yields, which are crop-
specific, revenue is aggregated at the household level to capture adaptation strategies such as crop mix adjustments and labor
reallocation.

Results highlight strong heterogeneity. High-value crops such as Chat, Garlic, and Shenkora exhibit significantly negative
linear temperature effects (–0.14, –0.81, –0.23, respectively), showing high vulnerability to warming. By contrast, Pepper
revenues increasewith temperature, suggesting thatmildwarmingmay expand its profitability. Cereals such asTeff,Maize, and
Sorghum display concave responses: revenues rise under moderate warming but decline beyond critical thresholds, consistent
with agronomic evidence of heat stress effects (Deressa & Hassan, 2009). This mirrors the inverted-U relationships reported
by Schlenker & Roberts (2009) and Lobell et al. (2011).

Precipitation effects are weaker overall, but positive for Pepper, Sorghum, and Shenkora, highlighting their dependence on
rainfall. In contrast, excessive moisture harms crops like Chat and Coffee, likely through quality losses or disease pressure
(Alemayehu et al., 2020). Quadratic precipitation terms are generally insignificant, but suggest that both drought and excess
rainfall can undermine revenues.
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Figure 11: Climate Margin Effect on Households Income
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Overall, the findings show that revenue sensitivity is stronger for cash crops (e.g., Chat, Coffee, Garlic) than for staple cereals,
which are relatively more resilient but still vulnerable at extremes. These results imply that climate-smart adaptation must dif-
ferentiate strategies: protecting cash crops through irrigation and relocation to cooler zones, while stabilizing cereals through
soil moisture conservation and insurance schemes. This aligns with Ethiopia’s FAO (2018) CSA strategy and underlines the
urgency of preparing for projected warming of 1.5–2.5°C by 2050 (IPCC, 2022).

4.3 Extensive Margin

The mains results of the models estimations are presented in Figure 12 and Figure 13.

Cereals

The results in Table 16 shows that Sorghum is highly resilient and well adapted to semi-arid climates. Across all temperature
bins, it displays consistently positive and statistically significant coefficients (e.g., +15.1 to +15.3 log-odds). Interpreted in
odds-ratio terms, this means that the probability of farmers choosing sorghum increases sharply with warming, which is fully
coherent with its well-documented heat and drought tolerance (Rosenow & Dahlberg, 2000). Sorghum’s positive response
explains why it is frequently used in rotational and mixed cropping systems in Sub-Saharan Africa, as it provides a reliable
option under rising temperatures.

Wheat also shows positive but moremoderate coefficients in the 16–25°C range (around +12 to +13.6 log-odds). This indicates
that warming within this optimal window raises the odds of wheat being cultivated. However, coefficients turn negative above
27°C, reflecting wheat’s vulnerability to heat stress during flowering and grain filling (Asseng et al., 2015). This turning point
highlights the narrow climatic window within which wheat can remain a viable choice. Millet presents a similar pattern of
adaptability, with strong positive coefficients at cooler to moderate temperatures (e.g., +17.7 at 14–15°C and +15.1 at 20–
21°C). Yet, coefficients decline steeply under hotter conditions (–25.0 at 27–28°C), indicating that while millet is widely
recognized as a heat- and drought-tolerant crop (Rai et al., 1999), its resilience has limits when exposed to extreme heat.
Farmers’ crop choices thus reflect this balance: millet is favored under moderate warming but less likely to be planted under
very high temperatures.
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Figure 12: Effects of temperature bins on probabilities of planting the crop
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By contrast, Teff exhibits only small and statistically insignificant coefficients (between –1.9 and +2.3), suggesting that tem-
perature does not substantially alter farmers’ decisions to cultivate it. This limited responsiveness likely reflects teff’s status as
a culturally embedded staple, grown across Ethiopia irrespective of marginal temperature variations. Its localized importance
explains its weak odds-ratio signals in the model. Finally,Maize shows consistently negative coefficients across temperature
ranges (–0.6 to –1.5), implying reduced odds of being planted as temperatures rise. This pattern is coherent with maize’s
agronomic profile: as a space- and input-demanding crop, it is typically grown in monocultures and less compatible with
intercropping systems (Giller et al., 2004). The negative coefficients suggest that farmers avoid maize under hotter conditions,
likely due to its high water and nutrient requirements, which limit adaptability in mixed farming systems.

Fruits

For avocado, coefficients are strongly negative across nearly all temperature bins, reaching –35.6 log-odds at 29–30°C (Ta-
ble 17). This translates into a sharp reduction in the odds of farmers planting avocado as temperatures rise. The result is fully
coherent with its known sensitivity to heat stress, which above 28°C reduces fruit set and increases flower abortion (Whiley
et al., 2002). Agronomically, avocado orchards are managed as monocultures with dense canopies and deep roots that com-
pete heavily for water and nutrients, leaving little scope for intercropping (Wolstenholme, 2011). The negative coefficients
therefore capture both biological and management constraints, making the model results ecologically justified.

Banana also shows uniformly negative coefficients, ranging from –13 to –18 log-odds, indicating consistently lower odds of
intercropping or co-planting under all temperature conditions. As a perennial with continuous canopy cover and high water
demand, banana dominates land use and suppresses other crops. This agronomic reality, documented in tropical systems
(Robinson & Galán Saúco, 2010), explains why bananas are rarely rotated or integrated into diversified systems, except in
smallholder subsistence settings.
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By contrast,mango displays strongly positive coefficients across all temperature bins, increasing from +14.1 to +19.9 log-odds.
In odds-ratio terms, this means farmers are much more likely to cultivate mango under warmer conditions. This is consistent
with its heat tolerance and its common role in agroforestry systems in Africa and South Asia (Singh & Chadha, 2001). Its open
canopy allows light penetration, while its deep roots reduce surface competition, making it more compatible with understory
crops. Furthermore, mango trees improve soil microclimate and water retention (Nair, 1993), which explains their positive
association with planting probabilities under warming scenarios.

Nuts

In Table 18, the results indicates a strong negative association between temperature and the likelihood of cultivating peas.
Coefficients are consistently below –30 log-odds and reach –67.1 at 29–30°C, which translates into odds close to zero of
farmers choosing peas under warm conditions. This pattern is agronomically coherent, as peas are cool-season crops that
perform best at 10–20°C (Singh et al., 2018). Their incompatibility with tree nuts, which thrive in warmer and drier conditions,
likely reflects both seasonal mismatches and competition for resources in mixed systems.

In contrast, beans show small and generally positive coefficients, ranging from +1 to +4 log-odds across most temperature
bins. This suggests a modest increase in the odds of planting beans alongside nuts, though the effect is weak and inconsistent.
This variability reflects the fact that beans, while legumes like groundnuts and capable of nitrogen fixation, have short growth
cycles and flexible planting seasons, making their association with perennial nut systems less systematic. As highlighted by
\textcolor{darkblue}{hyperref[ref:hussain2019]{Hussain et al., 2019)}, beans are commonly rotated or intercropped, but not
always with long-cycle crops such as tree nuts, which explains the mixed evidence in the model.

Vegetables

Shenkora exhibits consistently high positive log-odds between 14°C and 26°C, before declining moderately at higher temper-
atures. In odds ratio terms, farmers are substantially more likely to cultivate legumes alongside Shenkora within this range,
confirming its agronomic compatibility. This is fully coherent with the optimal growth conditions for legumes, typically
between 18°C and 26°C (FAO, 2021).

Pepper also shows uniformly positive coefficients across all temperature bins, indicating a robust increase in the probability
of legume planting. This strong association reflects common intercropping practices where peppers and legumes comple-
ment each other through compatible growth cycles and shared climatic preferences (Choudhury et al., 2016). The consistent
direction and magnitude of these coefficients strengthen the model’s reliability.

By contrast, Garlic is associated with strongly negative coefficients across all temperature intervals, with log-odds as low
as –15 (14–15°C), meaning the odds of co-planting legumes with garlic are extremely low. This outcome aligns with field
knowledge: garlic is a nutrient- and moisture-demanding crop that competes heavily with other plants, making it unsuitable
for rotation or intercropping with legumes (Singh et al., 2019).

Potato shows smaller but consistently negative effects across temperature bins, especially within the optimal range for legumes.
The odds of co-planting legumes with potato are thus reduced, which reflects their overlapping planting seasons and potato’s
sensitivity to heat stress above 25°C (Haverkort et al., 2013). Pumpkins display an overall positive trend, suggesting com-
patibility with legumes, though an unusually high coefficient at 27–28°C (+44.65 log-odds) is likely a statistical artifact due
to limited observations. While pumpkins are indeed adapted to warm conditions, this outlier requires cautious interpretation.
Finally, Kale and Bekolo show coefficients close to zero without consistent patterns, indicating limited influence on legume
planting decisions. Their marginal role in mixed systems may explain the weak associations, which are likely shaped by local
and context-specific practices.
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Figure 13: Effects of temperature bins on probabilities
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For Basil, the crop choice model shows strongly negative log-odds across all temperature bins, with the largest declines
between 15°C and 17°C. This means that the probability of oilseeds being planted alongside Basil is very low, consistent
with its agronomic profile. Basil is a shallow-rooted, moisture-demanding crop that competes for nutrients and water, making
it unsuitable for association with large-scale oilseed cultivation. This is in line with field observations: Basil is generally
cultivated in home gardens or intensive intercropping systems rather than in rotation with oilseeds ( Ikerd (2000); Wakjira et
al., 2018). The negative coefficients are therefore both statistically robust and ecologically justified.

In contrast, Enset displays consistently strong positive coefficients across nearly all temperature intervals, indicating that
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households are significantly more likely to grow oilseeds in areas where Enset is present. This is coherent with Ethiopian
farming systems, where Enset is cultivated as a perennial crop with deep roots that enhance soil structure and water retention
Brandt et al., 1997. Farmers frequently combine annual crops—such as legumes and oilseeds—with Enset-based plots to bene-
fit from these soil improvements. This relationship has been widely recognized as a pathway toward sustainable intensification
in the Ethiopian highlands Borrell et al., 2020.

Coffee, however, presentsmixed and less coherent results. Formost temperature bins, the coefficients are weak, but at 29–30°C
the model shows a sudden strong positive effect. Given that coffee is highly sensitive to heat stress, with quality deteriorating
above 26°C DaMatta et al., 2007, this spike is unlikely to represent a genuine agronomic response. Instead, it may reflect
regional substitution patterns: in overheated zones, farmers could replace coffee with oilseeds, which the model captures
as a statistical association rather than true co-location. This highlights the need for cautious interpretation, especially when
confidence intervals are wide or data is sparse at high-temperature bins. Finally, Gesho shows weak and scattered coefficients
across all temperature bins. As Gesho is typically grown as boundary hedges or for traditional brewing, its role in shaping
oilseed cultivation is minimal. The weak effects are therefore consistent with its marginal agronomic role, making the model’s
output both plausible and expected.

4.4 Limitation and Transferability

While this study provides robust evidence on the heterogeneous impacts of climate variability and the role of crop diversifi-
cation, several limitations should be acknowledged. First, the climate variables are derived from gridded datasets rather than
local weather station data, which may introduce spatial interpolation errors, particularly in areas with sparse observational
coverage. In addition, household-reported yields are subject to recall bias and measurement errors, which could affect the
precision of the estimated coefficients. Second, the potential for omitted variable bias remains, as certain unobserved factors
such as farm management practices, input quality, or access to credit—may influence both climate exposure and crop perfor-
mance. Although the fixed-effects framework controls for time-invariant household characteristics, it cannot fully eliminate
such concerns. Third, the results are context-specific to Ethiopian smallholder systems, and caution is warranted when gen-
eralizing them to other agroecological zones or countries with different market structures and institutional settings. Finally,
the analysis captures seasonal and annual variations but does not fully address intra-seasonal dynamics, which can be critical
for climate-sensitive crops. Future research could mitigate these limitations by incorporating higher-resolution meteorolog-
ical data, applying instrumental variable techniques to address potential endogeneity, conducting sensitivity analyses with
alternative datasets, and expanding the scope to include comparative studies across regions.

Although the empirical analysis is firmly rooted in the Ethiopian smallholder context, the findings hold broader relevance
for other developing countries where rain-fed agriculture dominates. The observed crop-specific, threshold-based climate
response functions provide a replicable framework that can be applied to similar highland tropical and subtropical settings in
East Africa, South Asia, and parts of Latin America. For instance, the strong temperature sensitivity of crops such as teff, garlic,
and chat parallels findings for wheat, onions, and cash crops in other mid-altitude regions. Likewise, the documented benefits
of diversification in buffering yield losses align with global evidence from smallholder systems in Kenya, Nepal, and Peru.
However, differences in market access, infrastructure, and institutional support can mediate the magnitude of these effects.
Therefore, while the methodological approach is transferable, policy prescriptions must be adapted to local agroecological
and socioeconomic conditions. Embedding this framework into cross-country comparative studies could further enhance its
generalizability and inform climate-resilient agricultural strategies at a global scale.
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5 Conclusion and Policy Implication

Contributions to the Literature and Methodology

This study makes significant contributions to the empirical and methodological understanding of climate change impacts on
smallholder agriculture. To my knowledge, this study is in range of the rarely which aims to produce crop-specific, threshold-
based climate response functions for over twenty staple, cash, and horticultural crops in Ethiopia, using a decade-long na-
tionally representative household–crop–year panel dataset. This level of disaggregation goes beyond the aggregated cereal-
focused approaches common in Sub-Saharan African studies, enabling precise identification of both beneficial and harmful
climate thresholds for each crop. Unlike most previous Sub-Saharan African studies that rely on aggregated crop categories,
this thesis disaggregates the analysis to the individual crop level, enabling the identification of nonlinear, crop-specific tem-
perature and precipitation thresholds. Methodologically, it integrates a multi-margin framework to capture intensive (yield),
economic (revenue), and extensive (crop choice) margins, into a behavioral model that treats diversification as an endogenous
response to climate stress rather than a static characteristic. This approach departs from much of the existing literature, which
often models diversification as an exogenous or control variable (e.g.,Bezabih & Di Falco, 2012 ; Asfaw et al., 2016). Fur-
thermore, the use of semi-parametric temperature-bin models with 1°C increments allows the estimation of smooth nonlinear
response curves without imposing restrictive functional forms. In the Ethiopian highland context, the evidence clearly shows
that adaptation strategies must be tailored not only to regional agroecological differences but also to the specific crop port-
folios of farmers. This underlines that a uniform, one-size-fits-all approach would overlook critical local vulnerabilities and
opportunities.

key findings and insights

Climate change poses one of the most immediate threats to agricultural systems globally, with particularly severe implications
for smallholder farmers in rain-fed economies such as Ethiopia. This thesis was motivated by the absence of fine-grained,
household-level evidence on how temperature and precipitation variations affect agricultural performance and how farmers
adapt, deliberately or under constraint. Using five waves of household–crop–year data, the analysis employed fixed-effects
econometric models with both linear and nonlinear climate variables, capturing within-household variation while controlling
for unobserved characteristics. By embedding diversification in a behavioral framework, the study measured not only the
direct effects of climate variables but also the adaptive strategies they induce. The results show marked heterogeneity in
climate sensitivity across crops. Moderate warming benefits crops such as rice (about +47% yield per +1°C within optimal
ranges), sorghum (+38%), and millet (+33%), reflecting Ethiopia’s relatively cool baseline. Conversely, teff (−8% per +1°C
beyond optimal conditions) and garlic (−17%) suffer significant losses under higher temperatures. On the revenue side, chat
(khat) declines sharply (−14% per +1°C), while pepper revenues rise by approximately 12%. Rainfall effects are smaller in
magnitude but significant for certain crops: a 10% increase in precipitation raises revenues for sorghum and pepper by 0.5–
0.6% yet reduces chat revenues by about 1%. Across multiple crops, significant quadratic temperature effects confirm the
threshold-bound nature of climate–productivity relationships, where warming benefits quickly reverse beyond critical limits.

The crop choice model reveals clear and differentiated adaptation patterns across cereals, fruits, legumes, and oilseeds.
Sorghum and millet stand out as the most climate-resilient cereals, with large positive odds-ratios indicating that farmers
are significantly more likely to cultivate them under hotter and drier conditions. Wheat shows adaptability within a narrow
thermal window, but becomes less viable once heat thresholds are exceeded, while maize consistently declines in probability
of cultivation, reflecting its high input and water demands. Teff, by contrast, displays little responsiveness to climate variables,
underscoring its role as a culturally embedded staple grown independently of marginal climate fluctuations. Among fruits,
mango supports mixed cropping under warmer conditions, while avocado and banana strongly suppress diversification due to
their canopy dominance and water requirements. For legumes, Shenkora and pepper reinforce diversification under moderate
climates, whereas garlic and potato reduce cultivation probabilities due to competition for soil nutrients and overlapping
growing seasons. Finally, perennial crops such as enset emerge as positive enablers of diversification, while coffee and basil
show mixed or suppressive effects, reflecting their sensitivity to heat and resource competition.

Taken together, these findings highlight three key insights: (1) smallholders adapt to climate stress not only through yield
responses but also by reallocating land and labor across crops; (2) climate-resilient crops such as sorghum, millet, mango, and
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enset play a strategic role in household riskmanagement; and (3) vulnerability is concentrated in crops likewheat, maize, garlic,
and coffee, which exhibit sharp declines under warming. Policy recommendations follow directly: Ethiopia’s Climate-Smart
Agriculture agenda should prioritize the dissemination of heat- and drought-tolerant crops, promote enset and mango-based
agroforestry systems, and reduce reliance on climate-sensitive crops through targeted insurance, irrigation, and extension
services. By linking empirical evidence to tailored interventions, these results provide actionable guidance for designing
adaptation strategies that reflect both Ethiopia’s agroecological diversity and farmers’ adaptive behavior.

The panel analysis during drought years reveals that diversification significantly reduced yield losses, especially in low-rainfall
zones. While the magnitude of this buffering effect varied by agroecological zone and market access, the overall pattern sup-
ports diversification as a practical risk management tool for Ethiopian smallholders. However, its benefits are uneven, varying
by agroecological zone, market access, and the nature of climatic stress. High-value cash crops, for instance, respond strongly
to both climatic constraints and market volatility, while staple cereals show greater thermal tolerance but remain sensitive to
extreme events. These findings reinforce the view that adaptation is multi-dimensional, influenced by both biophysical and
economic factors.

The evidence supports Ethiopia’s Climate Resilient Green Economy strategy and aligns with the principles of Climate-Smart
Agriculture. Policy recommendations include spatially targeted promotion of crops according to climatic thresholds, relo-
cation of heat-sensitive species to cooler zones, scaling up of strategic diversification through improved seed varieties and
strengthened extension services, and substantial investment in irrigation and water management to reduce dependence on
increasingly erratic rainfall. By combining detailed empirical evidence with a behavioral lens on farmer decision-making,
this study provides both actionable insights for Ethiopia and a replicable methodological framework for other smallholder-
dominated economies facing similar climate risks.
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Appendix

APPENDIX A: Additionnal descriptive Statistics

Table 7: Data Quality Assessment for Agricultural Production

Case Area (ha) Quantity (kg) Revenue
(BIRR)

Interpretation Action Taken

1 0 or NA 0 or NA 0 or NA No crop activity Drop from dataset
2 0 or NA >0 >0 Missing area, but harvest and in-

come reported
Keep but flag

3 0 0 >0 Revenue with no harvest Data inconsistency - flag for re-
view

4 0 >0 0 Harvest without income Self-consumption or post-
harvest loss - keep

5 0 >0 NA Harvest with missing income Non-commercial production -
keep

6 0 0 0 Valid zero observation (no pro-
duction)

Keep

7 NA >0 NA or 0 Harvest but no area or income Small-scale production - keep
8 NA NA >0 Income without production Suspicious - exclude
9 NA >0 >0 Production without area Plausible but flag
10 > 0 0 >0 Area and revenue but no quan-

tity
Measurement error - impute or
exclude

11 > 0 >0 NA Missing revenue Non-commercial - keep
12 NA >0 >0 Missing crop name Impute dominant crop

This table is build based on all the issues I encontered when cleaning the data.

Figure 14: Wave and presence of houshold
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Figure 15: Distribution of the logarithm the Yield and households Incomes
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Table 8: Matrix of correlation between climates variables

Variable Temp Precip precip² Temp²
Temp 1.00 0.29 -0.01 0.24
Precip 0.29 1.00 0.03 0.02
Precip² -0.01 0.03 1.00 0.04
Temp² 0.24 0.02 0.04 1.00

Figure 16: Possibilities of Missing values (𝑅𝑖𝑡, 𝑆𝑖𝑡, 𝑄𝑖𝑡)

𝑅𝑖𝑡

𝑆𝑖𝑡

𝑄𝑖𝑡

(1, 1, 1)

1

(1, 1, 0)

0

1

𝑄𝑖𝑡

(1, 0, 1)

1

(1, 0, 0)

0

0

1

𝑆𝑖𝑡

𝑄𝑖𝑡

(0, 1, 1)

1

(0, 1, 0)

0

1

𝑄𝑖𝑡

(0, 0, 1)

1

(0, 0, 0)

0

0

0

vii



Table 9: Summary statistics by Wave

Variable Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Global

Min Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max

Temperature 14.1 20.5 3.1 30.6 14.8 20.4 2.5 30.9 14.1 21.3 3.6 30.8 14.2 20.4 2.1 30.4 14.1 20.7 3.3 30.8 14.1 20.7 2.9 30.9
Precipitation 639.3 858.5 62.1 1,107.6 585.9 833.2 65.5 1,146.9 586.3 848.5 61.5 1,0161.5 617.4 869.8 68.9 1,104.9 604.5 838.6 64.5 1,068.8 585.9 849.7 65.9 1146.9
log(Yield) 0.28 6.54 5.21 8.54 0.46 7.55 2.02 10.55 0.75 7.78 1.91 8.78 -1.42 8.44 2.07 8.44 -0.49 7.89 2.43 9.89 -1.2 8.4 2.3 10.5
log(Crop revenue) 0 4.6 2.8 11.6 0 6.1 2.8 10.1 0 4.8 2.9 12.3 0 6.2 1.8 11.4 0 5.3 2.6 13 0 103 80.4 311

Table 10: Percentage of Zero Yields by Crop and Wave

Crop Wave 1 Wave 2 Wave 3 Wave 4 Wave 5
Avocado 6.7 15.6 6.6 17.3 6.7
Banana 9.7 14.5 9.9 17.6 7.9
Chat 8.2 10.7 6.8 19.9 4.6
Coffee 10.6 19.8 9.2 16.0 4.7
Enset 8.4 13.5 13.8 21.4 8.3
Garlic 6.1 20.1 15.0 24.6 11.2
Gesho 9.9 15.3 9.9 18.7 6.7
Kale 12.1 16.7 14.2 26.9 6.9
Maize 11.3 19.0 13.1 22.4 7.1
Mango 8.5 19.8 14.5 20.8 13.0
Millet 7.5 26.3 21.2 22.9 8.6
Peas 7.5 19.4 7.4 16.4 7.9
Pepper 24.0 22.1 11.7 30.0 11.3
Potato 15.4 21.3 14.5 30.5 9.6
Shenkora 0.0 18.2 16.7 35.3 9.4
Sorghum 11.5 18.3 15.3 24.6 8.2
Teff 9.1 16.4 14.9 24.5 4.3
Wheat 11.0 13.2 8.8 14.9 9.6
Total Pct.by wave 22.40 11.40 21.30 5.30 17.3
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Climate Variables (Temperature and Precipitation) in the Study Scope by Wave

Figure 17: Cereal and Fruits Crops in the Scope
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Figure 18: Nuts and Legums Crops in the Scope
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Figure 19: Oil Seed Crops in The scope
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Figure 20: Distribution of the logarithme the main variables by wave
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Distibution of each crop yield per wave in The Scope
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Nueg Peas

Beans Ground Nuts
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Steps of Models estimation

Formal equation for the graphics

The different graphics in the intensive margin analysis stand for each crop 𝑐 ∈ 𝐶 , for temperature bin 𝑘 ∈ {14, … , 29}:

𝑓𝑐(𝑇𝑡) =
29

∑
𝑘=14

𝛽𝑐𝑘 ⋅ 𝟙(𝑇𝑡 ∈ bin𝑘)

where 𝕀(⋅) is the indicator function. – Degree-8 Polynomial

̂𝑓𝑝(𝑥) =
8

∑
𝑖=0

𝜃𝑖𝑥𝑖

Estimated via ordinary least squares:

̂𝜃 = argmin
𝜃

𝑛
∑
𝑡=1

(log(𝑌𝑡) −
8

∑
𝑖=0

𝜃𝑖𝑇 𝑖
𝑡 − X𝑡𝛾)

2
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– LOESS Smoothing Local polynomial regression at point 𝑥0:

̂𝑓𝑙(𝑥0) = ̂𝛽0(𝑥0) + ̂𝛽1(𝑥0)(𝑥0 − 𝑥)

where ( ̂𝛽0, ̂𝛽1) minimize:
𝑛

∑
𝑡=1

𝐾 (𝑇𝑡 − 𝑥0
ℎ ) (log(𝑌𝑡) − 𝛽0 − 𝛽1(𝑇𝑡 − 𝑥0))2

with:

• 𝐾(𝑢) = (1 − |𝑢|3)3 (tricube kernel)

• ℎ = 0.2 × (max(𝑇 ) − min(𝑇 )) (bandwidth)

Concerning the Confidence Intervals, for each temperature bin 𝑘:

𝐶𝐼𝑘 = [effect𝑘 − 𝑧0.975 × 𝑆𝐸𝑘, effect𝑘 + 𝑧0.975 × 𝑆𝐸𝑘]

where 𝑧0.975 ≈ 1.96 is the 97.5th percentile of the standard normal distribution. And the visualization components 𝑃1zhich
exhibits as

𝑃1 =

⎧{{{
⎨{{{⎩

Step function: {(𝑘, effect𝑘)}29
𝑘=14

Polynomial fit: {(𝑥, ̂𝑓𝑝(𝑥)) ∶ 𝑥 ∈ [14, 29]}
LOESS smooth: {(𝑥, ̂𝑓𝑙(𝑥)) ∶ 𝑥 ∈ [14, 29]}
Confidence band: {(𝑥, 𝑦) ∶ 𝑥 ∈ [14, 29], 𝑦 ∈ [effect𝑥 − 0.96𝑆𝐸𝑥, effect𝑥 + 0.96𝑆𝐸𝑥]}

and 𝑃2 as

𝑃2 = {(𝑘, 𝑛𝑘) ∶ 𝑛𝑘 =
𝑁

∑
𝑡=1

𝕀(𝑇𝑡 ∈ bin𝑘)}
29

𝑘=14

for the crops with valids data.

Estimation framework

From the model 1, we aim to estimate the coefficients 𝛽1𝑘, 𝛽2𝑘, 𝛾1𝑘, 𝛾2𝑘 while eliminating fixed effects. Let’s define:

𝑦𝑖𝑐𝑡 ∶= log(𝑌𝑖𝑐𝑡)

We denote the interaction variables:

𝑥(1𝑘)
𝑖𝑐𝑡 ∶= 𝑇𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘, 𝑥(2𝑘)

𝑖𝑐𝑡 ∶= 𝑇 2
𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘

𝑥(3𝑘)
𝑖𝑐𝑡 ∶= 𝑃𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘, 𝑥(4𝑘)

𝑖𝑐𝑡 ∶= 𝑃 2
𝑖𝑡 ⋅ 𝟙𝐶𝑟𝑜𝑝𝑖𝑐=𝑘

Then the model becomes:

𝑦𝑖𝑐𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝛿𝑐 + ∑
𝑘

(𝛽1𝑘𝑥(1𝑘)
𝑖𝑐𝑡 + 𝛽2𝑘𝑥(2𝑘)

𝑖𝑐𝑡 + 𝛾1𝑘𝑥(3𝑘)
𝑖𝑐𝑡 + 𝛾2𝑘𝑥(4𝑘)

𝑖𝑐𝑡 ) + 𝜀𝑖𝑐𝑡

Let:

• X𝑖𝑐𝑡 = vector of all explanatory variables
• 𝛽 = vector of all coefficients

Objective of the Fixed Effects Estimator
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The terms 𝛼𝑖, 𝜆𝑡, 𝛿𝑐 are not observed, but must be removed to avoid omitted variable bias. To estimate 𝛽 correctly, we apply
the within transformation (demeaning approach) to eliminate these fixed effects.

– Step 1: Take Time-Crop Mean for Each Household For household 𝑖, crop 𝑐, define the average over time:

̄𝑦𝑖𝑐 = 1
𝑇𝑖𝑐

∑
𝑡

𝑦𝑖𝑐𝑡, ̄𝑥(𝑙𝑘)
𝑖𝑐 = 1

𝑇𝑖𝑐
∑

𝑡
𝑥(𝑙𝑘)

𝑖𝑐𝑡 for each variable 𝑥(𝑙𝑘)

The average of the equation over time is:

̄𝑦𝑖𝑐 = 𝛼𝑖 + 𝜆𝑡 + 𝛿𝑐 + ∑
𝑘

(𝛽1𝑘 ̄𝑥(1𝑘)
𝑖𝑐 + 𝛽2𝑘 ̄𝑥(2𝑘)

𝑖𝑐 + 𝛾1𝑘 ̄𝑥(3𝑘)
𝑖𝑐 + 𝛾2𝑘 ̄𝑥(4𝑘)

𝑖𝑐 ) + ̄𝜀𝑖𝑐

– Step 2: Subtract the Mean from Each Observation

Subtracting the average equation from the original:

𝑦𝑖𝑐𝑡− ̄𝑦𝑖𝑐 = (𝛼𝑖−𝛼𝑖)+(𝜆𝑡−𝜆𝑡)+(𝛿𝑐−𝛿𝑐)+∑
𝑘

𝛽1𝑘(𝑥(1𝑘)
𝑖𝑐𝑡 − ̄𝑥(1𝑘)

𝑖𝑐 )+𝛽2𝑘(𝑥(2𝑘)
𝑖𝑐𝑡 − ̄𝑥(2𝑘)

𝑖𝑐 )+𝛾1𝑘(𝑥(3𝑘)
𝑖𝑐𝑡 − ̄𝑥(3𝑘)

𝑖𝑐 )+𝛾2𝑘(𝑥(4𝑘)
𝑖𝑐𝑡 − ̄𝑥(1𝑘)

𝑖𝑐 )

+(𝜀𝑖𝑐𝑡 − ̄𝜀𝑖𝑐)

This simplifies to:

̃𝑦𝑖𝑐𝑡 = ∑
𝑘

𝛽1𝑘 ̃𝑥(1𝑘)
𝑖𝑐𝑡 + 𝛽2𝑘 ̃𝑥(2𝑘)

𝑖𝑐𝑡 + 𝛾1𝑘 ̃𝑥(3𝑘)
𝑖𝑐𝑡 + 𝛾2𝑘 ̃𝑥(4𝑘)

𝑖𝑐𝑡 + ̃𝜀𝑖𝑐𝑡

Where:

• ̃𝑦𝑖𝑐𝑡 ∶= 𝑦𝑖𝑐𝑡 − ̄𝑦𝑖𝑐
• ̃𝑥(𝑙𝑘)

𝑖𝑐𝑡 ∶= 𝑥(𝑙𝑘)
𝑖𝑐𝑡 − ̄𝑥(𝑙𝑘)

𝑖𝑐
• All fixed effects are now eliminated

Machine learning in bins selection in extensive Margin

Let 𝑦𝑖 ∈ {0, 1} be the binary response (crop presence/absence) and x𝑖 ∈ ℝ𝑝 the predictor vector (temperature bins, precipita-
tion) for observation 𝑖. The log-likelihood is:

ℓ(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖 log( 𝑒x𝑇
𝑖 𝛽

1 + 𝑒x𝑇
𝑖 𝛽 ) + (1 − 𝑦𝑖) log( 1

1 + 𝑒x𝑇
𝑖 𝛽 )]

where 𝛽 ∈ ℝ𝑝 are the coefficients. Ridge Regression (L2 Penalization) Objective: Minimize log-likelihood with L2 penalty
to handle multicollinearity:

𝛽̂
Ridge

= argmin
𝛽

{−ℓ(𝛽) + 𝜆
𝑝

∑
𝑗=1

𝛽2
𝑗 }

Key Properties:

• Shrinks coefficients toward zero but never exactly zero
• Effective when predictors are correlated (common in temperature bin data)
• Closed-form solution exists:

𝛽̂
Ridge

= (X𝑇X + 𝜆I)−1X𝑇 y

LASSO (L1 Penalization)
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Objective: Add L1 penalty for sparse solutions (automatic feature selection):

𝛽̂
LASSO

= argmin
𝛽

{−ℓ(𝛽) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|}

Key Properties:

• Produces exact zeros for irrelevant predictors
• No closed-form solution (requires coordinate descent)
• Superior for identifying critical temperature thresholds

Optimality Condition (KKT):
𝜕ℓ
𝜕𝛽𝑗

∣
̂𝛽𝑗

= 𝜆 ⋅ sign( ̂𝛽𝑗) ∀𝑗

Elastic Net (L1 + L2 Penalization)

Objective: Convex combination of L1 and L2 penalties:

𝛽̂
EN

= argmin
𝛽

{−ℓ(𝛽) + 𝜆 [𝛼
𝑝

∑
𝑗=1

|𝛽𝑗| + 1 − 𝛼
2

𝑝
∑
𝑗=1

𝛽2
𝑗 ]}

where 𝛼 ∈ [0, 1] controls the L1/L2 mix.

Advantages: - Inherits stability from Ridge (𝛼 → 0) - Retains feature selection from LASSO (𝛼 → 1) - Ideal for grouped
variables (e.g., multiple temperature bins affecting crops)

The optimal 𝜆 minimizes out-of-sample deviance via k-fold CV:

𝜆∗ = argmin
𝜆

{ 1
𝐾

𝐾
∑
𝑘=1

Deviance(𝛽̂
(𝑘)
𝜆 , y(𝑘)

test)}

where 𝛽̂
(𝑘)
𝜆 is the estimate excluding fold 𝑘.
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Intensive Margin:linear and quadratic effects of ckimate variables

Table 11: The effect of climate on the crop log(yield)

Temp. (lin) Temp. (quad) Precip. (lin) Precip. (quad)

Culture Coeff SE Coeff SE Coeff SE Coeff SE

Adenguare 0.3153*** (0.0744) 0.0092 (0.0179) 0.0083** (0.0026) 0.0000 (0.0000)
Avocado 0.5090*** (0.0385) -0.0313*** (0.0088) 0.0017 (0.0018) 0.0000 (0.0000)
Banana 0.4196*** (0.0189) -0.0095* (0.0038) 0.0023*** (0.0007) 0.0000*** (0.0000)
Basil 0.4196*** (0.0460) -0.0292* (0.0141) 0.0070* (0.0028) 0.0001. (0.0000)
Beans 0.3752*** (0.0214) -0.0056 (0.0064) 0.0037*** (0.0009) 0.0000*** (0.0000)
Bekolo 0.4458*** (0.0278) -0.0111. (0.0065) 0.0060*** (0.0013) 0.0000** (0.0000)
Chat 0.5745*** (0.0358) -0.0453*** (0.0066) -0.0073*** (0.0016) 0.0001*** (0.0000)
Coffee 0.3824*** (0.0197) -0.0071 (0.0051) 0.0031*** (0.0008) 0.0000*** (0.0000)
Dubbaa 0.1071. (0.0549) 0.0061 (0.0108) 0.0074* (0.0033) 0.0000. (0.0000)
Enset 0.5310*** (0.0223) -0.0128* (0.0058) 0.0016* (0.0007) 0.0000. (0.0000)
Fenugreek 0.6056*** (0.0830) -0.0532** (0.0177) -0.0020 (0.0033) 0.0000 (0.0000)
Garlic 0.5486*** (0.0320) -0.0140 (0.0101) 0.0026. (0.0014) 0.0000* (0.0000)
Gesho 0.4867*** (0.0339) -0.0194* (0.0079) 0.0017 (0.0013) 0.0000 (0.0000)
Godere 0.4640*** (0.0348) -0.0131 (0.0081) 0.0024. (0.0014) 0.0000*** (0.0000)
GroundNuts 0.3987*** (0.0989) -0.0102 (0.0269) 0.0051* (0.0022) -0.0000 (0.0000)
Kale 0.4852*** (0.0282) -0.0172* (0.0086) 0.0019* (0.0009) 0.0000** (0.0000)
Lemon 0.1876. (0.1030) 0.0305 (0.0247) 0.0084 (0.0055) 0.0001 (0.0001)
Maize 0.2679*** (0.0084) -0.0059** (0.0020) 0.0049*** (0.0004) 0.0001*** (0.0000)
Mango 0.2587*** (0.0257) 0.0028 (0.0065) 0.0037* (0.0015) 0.0001*** (0.0000)
Mashela 0.3277*** (0.0637) -0.0233* (0.0103) 0.0052* (0.0023) 0.0000 (0.0000)
Millet 0.2251*** (0.0442) 0.0099 (0.0115) -0.0012 (0.0026) 0.0001*** (0.0000)
Nueg 0.2516* (0.1019) 0.0404. (0.0224) 0.0045 (0.0045) 0.0001 (0.0001)
Peas 0.3665*** (0.0384) -0.0044 (0.0097) 0.0014 (0.0018) 0.0001* (0.0000)
Pepper 0.4125*** (0.0626) -0.0236* (0.0107) -0.0078* (0.0031) 0.0001*** (0.0000)
Potato 0.3024*** (0.0569) 0.0011 (0.0088) 0.0034 (0.0022) 0.0000 (0.0000)
Pumpkins 0.2883*** (0.0447) -0.0122 (0.0120) 0.0024 (0.0021) 0.0001*** (0.0000)
Rice 0.2454** (0.0887) 0.0571** (0.0213) 0.0097* (0.0039) 0.0000 (0.0000)
Shenkora 0.4712*** (0.0743) -0.0248. (0.0143) 0.0012 (0.0026) 0.0000. (0.0000)
Shimbura 0.5115*** (0.0496) 0.0223 (0.0186) 0.0061** (0.0022) 0.0001* (0.0000)
Sorghum 0.5237*** (0.0179) -0.0221*** (0.0053) 0.0019** (0.0006) 0.0000* (0.0000)
Teff 0.3247*** (0.0280) -0.0098 (0.0062) 0.0050*** (0.0013) 0.0001*** (0.0000)
Tobacco 0.4699*** (0.0991) -0.0070 (0.0211) 0.0034 (0.0056) -0.0000 (0.0000)
Wheat 0.5635*** (0.0337) -0.0178. (0.0106) 0.0038** (0.0013) 0.0000** (0.0000)

Fixed Effects
Household (hhid) Yes Yes Yes Yes
Wave Yes Yes Yes Yes
Crop Yes Yes Yes Yes

Statistics
Observations 20,507 20,507 20,507 20,507
S.E.:Clustered by:hhid by:hhid by:hhid by:hhid
R-squared 0.55545 0.55545 0.55545 0.55545
Within R-squared 0.37529 0.37529 0.37529 0.37529

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. Coefficients represent the impact of climate variables (temperature and precipitation,
linear and quadratic terms) on log agricultural yield. Quadratic precipitation terms are multiplied by 105 for readability.
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Intensive Margin: Temperature bins (non-linear)

Table 12: Temperature Bin Effects on Log Yield for Fruit

Avocado Mango Banana

Temp Bin Coeff SE Coeff SE Coeff SE

[14; 15[ 0.324*** (0.056) 0.155* (0.063) 0.228*** (0.042)
[15; 16[ 0.342*** (0.081) 0.228*** (0.042) 0.195*** (0.026)
[16; 17[ 0.211*** (0.037) 0.124*** (0.036) 0.131*** (0.025)
[17; 18[ 0.127** (0.043) 0.046 (0.042) 0.078*** (0.022)
[18; 19[ 0.087* (0.042) 0.087* (0.039) 0.013 (0.017)
[19; 20[ 0.021 (0.042) 0.025 (0.036) -0.053** (0.017)
[20; 21[ -0.006 (0.029) -0.020 (0.037) -0.078*** (0.017)
[21; 22[ -0.077. (0.040) -0.013 (0.041) -0.119*** (0.019)
[22; 23[ -0.101* (0.043) -0.022 (0.033) -0.127*** (0.022)
[23; 24[ -0.181*** (0.043) -0.100* (0.047) -0.231*** (0.029)
[24; 25[ -0.289*** (0.065) -0.109* (0.043) -0.227*** (0.028)
[25; 26[ -0.247** (0.086) -0.248*** (0.068) -0.286*** (0.036)
[26; 27[ -0.093 (0.074) -0.089 (0.061) -0.344*** (0.046)
[27; 28[ -0.295*** (0.021) -0.194** (0.065) -0.585*** (0.112)
[28; 29[ - - -0.326** (0.112) -0.334*** (0.064)

Fixed Effects
Household (hhid) Yes Yes Yes
Wave Yes Yes Yes

Stats
Obs 20,507 20,507 20,507
S.E. Clustered by:hhid by:hhid by:hhid
R² 0.286 0.286 0.306
Within R² 0.006 0.005 0.034

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models include household (hhid)
and wave fixed effects with standard errors clustered at household level. The dependent
variable is log agricultural yield. Temperature bins represent °C intervals. Dashes indicate
coefficients removed due to collinearity.
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Table 13: Oleaginius Nuts

Beans Peas Ground Nuts

Temp Bin Coeff SE Coeff SE Coeff SE

[14; 15[ 0.4227*** (0.0566) 0.2957*** (0.0580) 0.0524 (0.0569)
[15; 16[ 0.2842*** (0.0332) 0.3123*** (0.0642) 0.2409* (0.0978)
[16; 17[ 0.2052*** (0.0252) 0.3376*** (0.0968) 0.2341*** (0.0585)
[17; 18[ 0.2401*** (0.0242) 0.1020 (0.0760) 0.1716* (0.0798)
[18; 19[ 0.1866*** (0.0214) 0.2237*** (0.0503) 0.1526* (0.0745)
[19; 20[ 0.1230*** (0.0199) 0.1199** (0.0424) 0.1073* (0.0479)
[20; 21[ 0.0879*** (0.0218) 0.0866. (0.0449) 0.0403 (0.0537)
[21; 22[ 0.0093 (0.0220) 0.0200 (0.0444) -0.1108* (0.0555)
[22; 23[ 0.0117 (0.0262) -0.0505 (0.0765) -0.1989*** (0.0550)
[23; 24[ -0.0345 (0.0277) 0.0506 (0.0555) -0.0348 (0.0365)
[24; 25[ -0.0597. (0.0347) -0.0254 (0.0656) -0.0241 (0.1088)
[25; 26[ -0.1610*** (0.0408) -0.1372. (0.0713) 0.0240 (0.0405)
[26; 27[ -0.2273*** (0.0407) -0.0867 (0.0540) - -
[27; 28[ -0.1507* (0.0723) -0.3171** (0.1012) - -
[28; 29[ -0.1573 (0.1266) -0.2144*** (0.0322) - -
[29; +[ -0.4393* (0.2208) -0.1882 (0.1692) - -

Fixed Effects
Household (hhid) Yes Yes Yes
Wave Yes Yes Yes

Stats
Obs 20,507 20,507 20,507
S.E.: Clustered by: hhid by: hhid by: hhid
R² 0.298 0.287 0.283
Within R² 0.021 0.006 0.002

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models include household (hhid)
and wave fixed effects with standard errors clustered at household level. The dependent
variable is log agricultural yield. Temperature bins represent °C intervals. Some variables
were removed due to collinearity (see text for details).
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Table 14: Temperature Bin Effects on Log Yield for Vegetables

Garlic Beans Potato Pumpkins Shenkora

Temp Bin Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE

[14; 15[ 0.3754*** (0.0490) 0.2280 (0.1670) 0.1361 (0.0838) 0.0647 (0.1256) 0.3049** (0.1128)
[15; 16[ 0.3643*** (0.0504) 0.2721*** (0.0441) 0.1036 (0.0812) 0.1739** (0.0632) 0.3643*** (0.0573)
[16; 17[ 0.2451*** (0.0605) 0.2407*** (0.0410) -0.0056 (0.0514) -0.0601 (0.0704) 0.3132*** (0.0862)
[17; 18[ 0.1300*** (0.0322) 0.1208*** (0.0281) 0.0741 (0.0482) 0.0563 (0.0571) 0.1303 (0.0852)
[18; 19[ 0.0578* (0.0270) 0.0391 (0.0282) -0.0638 (0.0438) -0.0482 (0.0429) 0.1510. (0.0862)
[19; 20[ 0.0428 (0.0286) 0.0070 (0.0240) -0.0168 (0.0380) -0.0577 (0.0399) 0.1196 (0.0734)
[20; 21[ -0.0221 (0.0286) -0.0495. (0.0254) -0.0677 (0.0561) -0.0580 (0.0412) 0.0155 (0.0587)
[21; 22[ -0.0974*** (0.0267) -0.1183*** (0.0253) -0.0720 (0.0442) -0.1073* (0.0423) -0.0412 (0.0489)
[22; 23[ -0.1020** (0.0329) -0.1609*** (0.0318) -0.2333*** (0.0543) -0.1769*** (0.0470) -0.0969 (0.0809)
[23; 24[ -0.2337*** (0.0355) -0.2158*** (0.0308) -0.1873*** (0.0468) -0.2097*** (0.0556) -0.0816 (0.0604)
[24; 25[ -0.2403*** (0.0457) -0.2110*** (0.0361) -0.3143*** (0.0618) -0.1442** (0.0521) -0.0982 (0.0725)
[25; 26[ -0.3129*** (0.0462) -0.2482*** (0.0415) -0.3805*** (0.0679) -0.2601*** (0.0526) 0.0027 (0.0703)
[26; 27[ -0.4206*** (0.0563) -0.2085** (0.0688) -0.3535*** (0.0670) -0.2369* (0.1144) -0.2204*** (0.0530)
[27; 28[ -0.2984* (0.1264) -0.3028*** (0.0790) -0.2374*** (0.0660) 0.0139*** (0.0034) - -
[28; 29[ -0.6934*** (0.0290) -0.4497*** (0.0730) -0.2435* (0.1177) -0.3098*** (0.0377) -0.2440*** (0.0539)
[29; +[ -0.2516*** (0.0468) -0.3466* (0.1354) -0.3540*** (0.1036) -0.1026 (0.1052) - -

Fixed Effects
Household (hhid) Yes
Wave Yes

Stats
Obs 20,507 20,507 20,507 20,507 20,507
R² 0.291 0.294 0.286 0.285 0.284
Within R² 0.012 0.016 0.005 0.003 0.002

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models include household (hhid) and wave fixed effects with standard errors
clustered at household level. Dashes indicate coefficients removed due to collinearity. Temperature bins represent °C intervals.
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Table 15: Temperature Bin Effects on Log Yield for oil seeds

Basil Coffee Enset Gesho

Temp Bin Coeff SE Coeff SE Coeff SE Coeff SE

[14; 15[ 0.5300*** (0.0336) 0.3075*** (0.0565) 0.2629*** (0.0567) 0.3731*** (0.0450)
[15; 16[ 0.4915*** (0.0523) 0.3753*** (0.0275) 0.2252*** (0.0475) 0.2978*** (0.0545)
[16; 17[ 0.2114*** (0.0607) 0.2647*** (0.0284) 0.1703*** (0.0345) 0.3222*** (0.0497)
[17; 18[ 0.1690* (0.0742) 0.2036*** (0.0301) 0.1416*** (0.0262) 0.1880*** (0.0440)
[18; 19[ 0.2100*** (0.0578) 0.1446*** (0.0211) 0.0939*** (0.0247) 0.1369*** (0.0327)
[19; 20[ 0.0772 (0.0699) 0.0948*** (0.0235) 0.0267 (0.0233) 0.0551. (0.0323)
[20; 21[ 0.0285 (0.0602) 0.0602* (0.0245) -0.0463* (0.0214) 0.0388 (0.0321)
[21; 22[ 0.0376 (0.0479) -0.0211 (0.0276) -0.1325*** (0.0222) -0.0470 (0.0327)
[22; 23[ -0.0644 (0.0931) 0.0269 (0.0268) -0.1460*** (0.0228) -0.0542. (0.0328)
[23; 24[ -0.2294** (0.0781) -0.0610* (0.0284) -0.1778*** (0.0315) -0.1368*** (0.0388)
[24; 25[ -0.2017** (0.0676) -0.1377*** (0.0397) -0.2654*** (0.0355) -0.1658*** (0.0466)
[25; 26[ -0.1215 (0.1429) -0.0332 (0.0669) -0.2219*** (0.0408) -0.1569* (0.0645)
[26; 27[ -0.0944 (0.0626) -0.2338*** (0.0511) -0.4890*** (0.0581) -0.2919** (0.1000)
[27; 28[ -0.2134*** (0.0608) - - -0.2685*** (0.0790) -0.2988** (0.0986)
[28; 29[ - - -0.1019 (0.0873) -0.4533*** (0.0233) 0.0932*** (0.0224)
[29; +[ - - 0.0242 (0.0192) - - - -

Fixed Effects
Household (hhid) Yes
Wave Yes

Stats
Obs 20,507 20,507 20,507 20,507
R² 0.285 0.298 0.299 0.289
Within R² 0.003 0.021 0.024 0.010

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models include household (hhid) andwave fixed effects
with standard errors clustered at household level. Dashes indicate coefficients removed due to collinearity.
Temperature bins represent °C intervals.
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Figure 21: Temperature Bin Effects on Cereal Yields
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Extensive margin

Table 16: Cereal Crop Choice (Extensive Margin)

Maize Teff Sorghum Millet Wheat

Temp Bin Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE

[14; 15[ -0.547 (1.035) -0.698 (1.146) 14.91*** (0.864) - - -2.785*** (0.784)
[15; 16[ -0.401 (0.978) -1.699 (1.641) 14.45*** (0.647) 18.25*** (2.531) 12.78*** (1.431)
[16; 17[ -1.268 (0.961) 1.194 (1.006) 13.52*** (0.764) 16.68*** (4.257) 13.87*** (1.227)
[17; 18[ -0.606 (0.974) -0.837 (0.882) 14.90*** (0.486) 16.14*** (3.569) 13.14*** (1.068)
[18; 19[ -1.197 (0.939) 0.453 (0.973) 14.67*** (0.431) 17.76*** (3.654) 13.68*** (0.852)
[19; 20[ -1.387 (0.939) -0.712 (0.800) 15.04*** (0.397) 13.49*** (3.866) 12.67*** (0.939)
[20; 21[ -1.587. (0.943) 0.733 (0.915) 15.56*** (0.407) 12.37** (4.729) 13.19*** (1.002)
[21; 22[ -0.922 (0.946) 0.269 (0.895) 14.78*** (0.328) 10.89. (5.836) 13.46*** (0.874)
[22; 23[ -1.553. (0.937) -0.006 (0.955) 14.96*** (0.447) 15.56* (6.318) 12.37*** (1.141)
[23; 24[ -0.991 (0.958) 0.099 (1.015) 15.30*** (0.464) 14.89*** (2.684) 12.61*** (1.125)
[24; 25[ -0.596 (0.965) 0.420 (0.966) 13.67*** (0.624) 11.82* (5.350) 12.92*** (1.337)
[25; 26[ -0.636 (0.962) -1.150 (1.510) 13.06*** (1.045) 15.27*** (3.059) 12.24*** (1.812)
[26; 27[ -0.321 (1.005) 2.330* (1.131) 14.78*** (0.781) -24.64** (7.576) -3.383*** (0.930)
[27; 28[ -0.984 (0.985) -0.032 (2.349) 13.40*** (1.245) 3.031 (2.047) -2.450** (0.857)
[28; 29[ -0.151 (0.963) -0.987 (1.041) 15.10*** (0.900) - - -2.632** (0.851)
[29; +[ -0.975 (1.350) - - 0.988*** (0.270) - - - -

Precipitation
Precip 0.017 (0.023) 0.061 (0.067) -0.052 (0.037) 0.220 (0.260) 0.028 (0.083)
Precip² -1.00e-5 (1.36e-5) -3.63e-5 (3.95e-5) 3.12e-5 (2.18e-5) -0.0001 (0.0002) -2.00e-5 (4.83e-5)

Fixed Effects
Household (hhid) Yes Yes Yes Yes Yes
Wave Yes Yes Yes Yes Yes

Stats
Observations 2,482 551 960 126 334
Squared Corr. 0.400 0.274 0.199 0.641 0.175
Pseudo R² 0.318 0.245 0.173 0.611 0.195
BIC 6,384.1 1,264.1 2,319.9 266.61 809.51

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models include household (hhid) and wave fixed effects with standard errors
clustered at household level. The dependent variable is a crop choice dummy (extensive margin). Some temperature bins were removed
due to collinearity or lack of variation.
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Table 17: Fruits Choice (Extensive Margin)

Avocado Mango Banana

Temp Bin Coeff SE Coeff SE Coeff SE

[14; 15[ -1.388 (0.918) 14.40*** (1.935) -14.04*** (1.304)
[15; 16[ -16.62*** (1.588) 14.85*** (1.049) -13.71*** (0.948)
[16; 17[ -16.37*** (1.187) 16.80*** (1.336) -14.22*** (0.771)
[17; 18[ -16.85*** (0.925) 14.31*** (0.974) -14.52*** (0.549)
[18; 19[ -15.97*** (0.998) 13.87*** (0.893) -14.78*** (0.557)
[19; 20[ -16.91*** (0.933) 14.31*** (1.105) -14.41*** (0.598)
[20; 21[ -16.75*** (1.064) 15.74*** (0.693) -14.84*** (0.452)
[21; 22[ -15.99*** (1.058) 14.78*** (0.950) -14.53*** (0.497)
[22; 23[ -16.06*** (1.188) 13.89*** (0.993) -14.24*** (0.502)
[23; 24[ -17.06*** (1.338) 16.00*** (0.878) -14.61*** (0.552)
[24; 25[ -17.42*** (2.008) 15.32*** (1.252) -14.85*** (0.572)
[25; 26[ -17.91*** (1.507) 15.30*** (1.292) -14.21*** (0.803)
[26; 27[ -19.69*** (2.237) 16.48*** (1.421) -13.86*** (1.298)
[27; 28[ -0.108 (0.613) 15.73*** (1.844) -0.478 (0.340)
[28; 29[ -35.75*** (1.423) 16.22*** (1.346) -0.182 (0.268)
[29; +[ - - 19.43*** (2.619) -17.80*** (1.049)

Precipitation
Precip -0.142 (0.109) 0.015 (0.084) -0.050 (0.048)
Precip² 7.85e-5 (6.21e-5) -7.14e-6 (4.93e-5) 3.09e-5 (2.83e-5)

Fixed Effects
Household (hhid) Yes Yes Yes
Wave Yes Yes Yes

Stats
Observations 176 313 874
Squared Corr. 0.227 0.346 0.089
Pseudo R² 0.196 0.303 0.095
BIC 439.18 704.61 1,425.4

Notes: *** p<0.001, ** p<0.01, * p<0.05. All models include household (hhid) and wave
fixed effects with standard errors clustered at household level. The dependent variable is
a crop choice dummy (extensive margin). Some temperature bins were removed due to
collinearity or lack of variation.
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Table 18: Oleagineus Crop Choice (Extensive Margin)

Beans Peas

Temp Bin Coeff SE Coeff SE

[14; 15[ 0.972 (2.930) 1.942 (2.210)
[15; 16[ 0.734 (2.844) -31.77*** (2.277)
[16; 17[ 2.010 (2.829) -34.63*** (1.776)
[17; 18[ 1.593 (2.815) -35.20*** (1.805)
[18; 19[ 1.949 (2.827) -34.30*** (1.606)
[19; 20[ 1.103 (2.815) -33.05*** (1.461)
[20; 21[ 1.483 (2.832) -35.83*** (1.874)
[21; 22[ 1.149 (2.771) -33.93*** (1.249)
[22; 23[ 0.441 (2.864) -37.04*** (2.179)
[23; 24[ 1.319 (2.819) -33.47*** (1.537)
[24; 25[ 0.121 (2.852) -32.76*** (1.816)
[25; 26[ 1.649 (2.888) -30.02*** (1.725)
[26; 27[ 0.844 (3.008) -34.81*** (2.773)
[27; 28[ 0.876 (3.036) -37.48*** (2.588)
[28; 29[ -0.867 (3.212) -68.17*** (1.723)
[29; +[ 3.835 (2.925) - -

Precipitation
Precip 0.085. (0.051) 0.199 (0.167)
Precip² -4.83e-5 (2.99e-5) -0.0001 (9.71e-5)

Fixed Effects
Household (hhid) Yes Yes
Wave Yes Yes

Stats
Observations 869 279
Squared Corr. 0.481 0.598
Pseudo R² 0.403 0.526
BIC 1,976.2 596.91

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models in-
clude household (hhid) and wave fixed effects with standard errors clus-
tered at household level. Some temperature bins were removed due to
collinearity or lack of variation.
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Table 19: Vegetable/Specialty Crop Choice (Extensive Margin)

Garlic Kale Pepper Potato Pumpkins Shenkora

Temp Bin Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE

[14; 15[ -14.74*** (2.240) -1.485 (1.668) 17.84*** (1.627) -1.962 (3.403) 11.22*** (1.848) 13.51** (4.939)
[15; 16[ -2.235 (2.284) 0.656 (1.343) 15.78*** (1.098) -1.930 (3.534) 12.32*** (1.914) 4.460 (7.843)
[16; 17[ -2.796 (2.379) 1.110 (1.405) 16.42*** (1.217) -1.777 (3.335) 12.42*** (2.113) 5.685 (6.357)
[17; 18[ -1.503 (2.221) 0.100 (1.176) 17.33*** (1.268) -2.758 (3.509) 13.87*** (1.560) 5.845 (6.010)
[18; 19[ -1.675 (2.185) 0.338 (1.041) 17.97*** (0.979) -2.035 (3.420) 13.99*** (1.051) -8.362* (3.814)
[19; 20[ -0.415 (2.144) 0.385 (1.024) 17.09*** (0.693) -1.064 (3.372) 12.82*** (1.596) 4.245 (6.451)
[20; 21[ -0.451 (2.080) 0.641 (1.012) 16.99*** (0.988) -2.805 (3.268) 12.78*** (1.591) 3.536 (8.412)
[21; 22[ -0.374 (2.206) -0.214 (0.996) 16.96*** (0.780) -3.097 (3.401) 13.47*** (1.464) 3.334 (7.453)
[22; 23[ 0.337 (2.110) 0.611 (1.064) 18.12*** (1.234) -1.399 (3.342) 13.49*** (1.452) 15.15*** (4.414)
[23; 24[ -0.395 (2.271) 0.090 (1.063) 17.28*** (1.081) -2.132 (3.339) 13.12*** (1.892) -7.640* (3.879)
[24; 25[ -0.139 (2.338) 1.109 (1.141) 17.86*** (1.041) -0.435 (3.477) 11.09* (4.394) 9.197* (4.243)
[25; 26[ 2.179 (2.454) -0.572 (1.287) 17.07*** (1.462) -1.516 (3.989) 12.77*** (3.091) 4.619 (6.754)
[26; 27[ -1.806 (2.303) 0.652 (1.232) 16.83*** (1.567) -1.244 (3.500) -2.625* (1.287) 5.438 (6.901)
[27; 28[ 1.139 (2.950) 2.099 (1.452) 1.359* (0.614) -1.592 (3.613) 46.38*** (1.693) - -
[28; 29[ - - - - 0.807 (0.962) -4.018 (5.948) 16.23*** (1.738) - -
[29; +[ - - - - 0.827 (1.091) 0.350 (3.852) - - - -

Precipitation
Precip 0.075 (0.095) -0.039 (0.044) 0.038 (0.067) 0.090 (0.085) 0.289 (0.185) -0.578 (0.361)
Precip² -4.27e-5 (5.63e-5) 2.19e-5 (2.6e-5) -2.1e-5 (3.92e-5) -4.96e-5 (4.88e-5) -0.0002 (0.0001) 0.0003 (0.0002)

Fixed Effects
Household (hhid) Yes Yes Yes Yes Yes Yes
Wave Yes Yes Yes Yes Yes Yes

Stats
Observations 362 588 279 303 239 94
Squared Corr. 0.524 0.460 0.241 0.387 0.351 0.588
Pseudo R² 0.449 0.401 0.228 0.344 0.364 0.575
BIC 803.70 1,343.2 676.18 703.55 542.26 218.19

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models include household (hhid) and wave fixed effects with standard errors clustered at household
level. Some temperature bins were removed due to collinearity/lack of variation.
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Table 20: Oil seeds Crop Choice (Extensive Margin)

Basil Coffee Enset Gesho

Temp Bin Coeff SE Coeff SE Coeff SE Coeff SE

[14; 15[ -21.22*** (2.890) 0.540 (1.437) 13.68*** (1.313) -0.364 (1.530)
[15; 16[ -68.88*** (8.016) 1.122 (1.195) 12.91*** (1.051) 0.219 (1.529)
[16; 17[ -3.139. (1.739) 0.447 (1.210) 12.20*** (1.285) 0.055 (1.733)
[17; 18[ -20.58*** (3.722) 0.105 (1.193) 13.81*** (0.749) -0.337 (1.264)
[18; 19[ -19.75*** (1.369) 0.778 (1.122) 13.34*** (0.811) -0.514 (1.349)
[19; 20[ -20.38*** (2.749) 0.206 (1.138) 14.03*** (0.732) 1.394 (1.131)
[20; 21[ -18.47*** (3.057) -0.003 (1.137) 14.20*** (0.734) 0.735 (0.986)
[21; 22[ -20.09*** (4.247) 0.041 (1.150) 14.38*** (0.692) 0.530 (1.083)
[22; 23[ -19.00*** (4.503) 0.180 (1.110) 14.10*** (0.654) 1.036 (1.027)
[23; 24[ -19.44*** (3.755) 0.135 (1.128) 13.97*** (0.723) 0.885 (1.194)
[24; 25[ -21.21*** (2.704) 0.870 (1.097) 13.01*** (0.893) 0.130 (1.342)
[25; 26[ -15.22** (4.799) 0.226 (1.177) 13.73*** (0.819) 0.357 (1.842)
[26; 27[ -22.42*** (2.916) -0.498 (1.898) 13.04*** (1.517) 0.061 (2.031)
[27; 28[ - - 0.764 (1.630) 11.88*** (1.603) 0.015 (1.410)
[28; 29[ - - 14.35*** (1.051) 13.54*** (1.355) -2.511 (2.634)
[29; +[ - - -2.355 (2.318) -0.221 (0.862) - -

Precipitation
Precip 1.218. (0.683) -0.014 (0.036) -0.092. (0.050) 0.070 (0.060)
Precip² -0.001. (0.0004) 8.79e-6 (2.09e-5) 5.32e-5. (2.91e-5) -3.92e-5 (3.51e-5)

Fixed Effects
Household (hhid) Yes Yes Yes Yes
Wave Yes Yes Yes Yes

Stats
Observations 89 815 607 289
Squared Corr. 0.641 0.407 0.447 0.424
Pseudo R² 0.597 0.325 0.368 0.351
BIC 205.66 1,911.9 1,402.8 699.34

Notes: *** p<0.001, ** p<0.01, * p<0.05, . p<0.1. All models include household (hhid) and wave fixed effects with
standard errors clustered at household level. Some temperature bins were removed due to collinearity or lack of variation.
Extreme coefficients in Basil model suggest potential sensitivity to temperature.
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ML in bins and crop selection

elastic lasso ridge
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d_bin_29_30

precip_mod
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Mean Coefficient (absolut values)

V
ar

ia
bl

e

Method elastic lasso ridge

Importance Mean variables by Methods

method mean deviance mean vars mean lambda
LASSO 0.223 5.060 0.001

Elastic Net (α= 0.5 ) 0.223 6.485 0.0020
Ridge 0.223 18 0.845

Table shows mean performance metrics across all crops
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